
I. INTRODUCTION

The vehicle safety design and evaluation are experiencing a paradigm shift from physical testing to numerical 
simulation. Human body models (HBMs) are currently the most promising tool to simultaneously cope with the 
sophisticated human anatomy and diverse road accident scenarios. Conventional HBMs only represent the 
specific scanned individual. Statistical shape models are therefore brought up to quantitatively characterise 
population variation. However, existing shape models are mostly regression-based from a group of manually 
registered templates, which is time-/labour-expensive and cannot sufficiently capture the underlying prior 
distribution. In this study, we propose a data-driven shape generative model for bones, which autoregressively 
learns from raw samples and can generate high-fidelity new shapes in a fully unsupervised way. 

II. METHODS

Self-supervised Non-rigid Registration 
We intended to train a femur-shape generative model from the samples collected in [1]. However, mesh as the 
standard 3D-shape data structure is intrinsically discretisation-agnostic, so we first needed to unify the mesh 
pattern. A theoretically feasible solution would be to register the non-isometric samples onto a shared mesh 
template; however, the technical implementation is usually impractical with handcrafted features. To this end, a 
self-supervised learning-based registration was established (Fig. 1a). We built a Siamese network, i.e. the input is 
duplicated into two copies, randomly rotated and scaled respectively [2], and fed into two DiffusionNets [3] 
sharing the weight parameters. The spatial outputs are transformed into spectral through eigenfunctions of the 
Laplace-Beltrami operators. Thereafter, a combination of spectral contrastive, normalisation and regularisation 
losses are incorporated to facilitate the training. We leveraged a hybrid spatial-spectral framework to robustly 
infer pointwise correspondences from the learned features, as we did previously in [2]. Finally, the original 
samples in [1] were all registered onto a GHBMC femur-shaped template, formulating a new dataset with 90 
femurs, all in the same mesh pattern (Fig. 1b) for subsequent training of the generative model.  

(a) Self-supervised non-rigid registration [3]. (b) VAE-based generative model.
Fig. 1. The end-to-end autoregressive learning of the proposed generative model. 

VAE-based Generative Model of Femur Shape 
Variational autoencoder (VAE) [4] is a classical type of generative deep-learning model. It learns a compact latent 
representation of the high-dimensional but redundant realistic distribution, and subsequently generates valid 
samples from the low-dimensional latent space. In this study, we build a VAE network that autoregressively learns 
the shape distribution. It includes an encoder which embeds the registered 3D femur shapes (represented by 
4000×3 array, nodes by xyz-coordinates) into a 6-dimensional latent space 𝒛𝒛 = {𝑧𝑧𝑖𝑖}, 𝑖𝑖 ∈ {1, 2, … , 6} ; and a 
decoder which retrieves the original 3D shapes reversely (Fig. 1b).  
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In practice, the 90 registered femur samples have the same mesh pattern (Fig. 1b), i.e. consistent vertex 
number and connectivity. The encoder relies on SpiralNet++ [5] to learn intrinsic geometric features on the 
template by fusing local structural information around the vertex of interest on the graph. Latent space 𝒛𝒛 is 
formulated as a Gaussian distribution parameterised by its mean 𝒛𝒛𝜇𝜇 and variance 𝒛𝒛𝜎𝜎. The decoder is a simple 
fully-connected network, which reconstructs the 4000×3 coordinate array from a latent vector sampled from 
predicted 𝒛𝒛. The loss function is an ELBO-form (Evidence Lower BOund) [4] with a mean square error (MSE) term 
between the original and reconstructed coordinate array as well as a Kullback-Leibler divergence term evaluating 
the distance between 𝑧𝑧 and the standard Gaussian distribution (0-mean and 1-variance).  

III. INITIAL FINDINGS

After training of the VAE model, we can approximately characterise the prior distribution of the femur shapes 
with a standard 6-dimensional Gaussian distribution. That is, if we sample from the Gaussian distribution and pass 
the sampled latent vector through the trained decoder, a vertex coordinate array is generated, which can then 
be converted to a new valid femur shape with the inter-vertex connectivity from the template mesh. This is how 
the generative model works. Tuning dimensions of the latent vector continuously control different characteristics 
of the generated femur shape, respectively (Fig. 2), i.e. the overall size (𝑧𝑧6), slenderness (𝑧𝑧4), shaft curvature (𝑧𝑧2) 
and length (𝑧𝑧3 ), epiphysis/metaphysis style independent of diaphyisis (𝑧𝑧1 ), and some small-scale localised 
features (𝑧𝑧5). As shown in the figure, the generated shapes are considerably fidelic. No unreal artefacts are found 
even when the sampled latent vectors are quite far away from the mean value (±3𝜎𝜎). It demonstrates that the 
Gaussian distribution essentially encodes the prior distribution of the femur shapes. 

Fig. 2. Influence of each dimension of the latent vector on the generated femur bone shape. One dimension of the latent 
vector is changed from its 𝜇𝜇 − 3𝜎𝜎 to 𝜇𝜇 + 3𝜎𝜎 (i.e. -3 to +3 since the latent space approximately follows the Gaussian 
distribution) at a time with the other dimensions being  𝜇𝜇 (i.e. 0). 

IV. DISCUSSION

We proposed a data-driven generative model of femur shapes in this study, which learns from a group of raw 
shapes segmented from CT scans. In general, our work has two key advantages. First, it is fully automatic, without 
having to recruit any low-consistency and error-prone human manipulations. Secondly, it generates higher-
fidelity samples. Algorithms like principal component analysis (PCA) can also downsize the representation, but 
simply sampling from the PC-score space might not always result in geometrically/anatomically meaningful 
shapes. Researchers usually rely on regression to find a valid subspace therein, but regression discards part of the 
high-order details. Instead, our approach naturally captures the prior distribution by balancing between the 
reconstruction and regularisation (KL-divergence) terms in training. In future, quantitative evaluation of the 
sample’s fidelity will be necessary, while incorporating advanced techniques, like diffusion model [6], might be 
beneficial to improving sample quality. It could also perform conditional generation by correlating the latent 
space with age, sex, height, and other anthropomorphic parameters to explicitly control the generated shapes. 
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