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Abstract Finite Element Human Body models have emerged as a cost-effective alternative to 
Anthropometric Test Devices (ATDs) [1] for crash testing and play a pivotal role in design for crash safety, by 
providing accurate predictions of human response to impacts. The ability to generate HBMs of varying 
anthropometry from an existing HBM shall enable vehicle safety studies for a wider range of body types.. This 
paper presents an approach for personalisation of Human Body Models (HBMs) using contours, a technique that 
was previously used to create Posture-Specific Human Body models in Chhabra et al. [39]. The mesh creation is 
verified by comparing the elemental Jacobian ratio, aspect ratio, and the interior angles of the generated model 
with that of the nominal HBM to establish confidence in use of the model when running explicit FE simulations. 

Keywords Human Body Models, HBM Personalisation, Contour Generation, Delaunay Tetrahedralisation, 
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I. INTRODUCTION

 Crash testing has played a crucial part in ensuring crash safety over the last five decades, but it remains an 
expensive process. A significant cost factor in crash testing is the use of crash test dummies or full-scale ATDs [1]. 
These ATDs are metal-and-polymer constructs that are expensive to manufacture and calibrate, which is why they 
are available only in a limited number of shapes and sizes. To represent the diversity in the population and to 
minimise the cost associated with crash testing, crash simulation using models of the human and the vehicle [2] 
has emerged as a viable alternative. These simulations reproduce real-world injury patterns and finer resolution 
of the crash consequences than tests using ATDs. Recently, the gold standard for crash simulators [3-5] includes 
the use of Finite Element Human Body Models (FE-HBMs), which can represent subjects of differing body 
dimensions, weights, etc. The creation of these FE-HBMs for varying Anthropometric Parameters [6] (AP) has 
been time-consuming and required significant human intervention. Therefore, there is a need to modify nominal 
FE-HBMs to generate an FE-HBM of specified anthropometry. Though anthropometry are surface measurements, 
the modification targeted towards them needs to percolate down to the organ level while maintaining numerical 
stability when running explicit FE analysis. 

Currently, the HBMs with limited anthropometric combinations (e.g. 5th percentile female, 50th and 95th 
percentile male of the global population) are available for crash simulations. These HBMs do not span the 
anthropometric variety of the vehicle users or pedestrian populations. Given that the efficacy of the safety 
measures, changes with anthropometry, availability of HBMs of different anthropometries is important in vehicle 
safety studies [7-9] using crash simulations [10-11]. Some of the FE HBMs that are commercially available include 
the THUMS model [12-15], the GHBMC model [16], the HUMOS model [17], the SAFER-HBM [18-19] and the PIPER 
child model [20-22] to name a few. These models capture the geometries of structurally complex human body 
parts, including the head, torso, joints and organs, by millions of finite elements [23]. This is a time-consuming 
task, and it is not feasible to repeat the task for every desired anthropometry. Therefore, personalisation 
processes have been developed to modify a reference HBM and obtain a model representing a person with 
specified anthropometry. The human body is a continuous structure, however, it is not intrinsically segmented 
into parts, as in ATDs. This increases the complexity of the personalisation process, as there is a need to ensure 
compatibility in the mesh between adjacent body regions. In addition, the reference often needs to be 
repositioned to represent the posture of the target person, as the reference HBM is typically available limited 
postures. In this process of model modification, it is also important to ensure that the personalised model is 
computationally stable, which requires minimising mesh distortions, or formation of poor-quality elements. 
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This personalisation process has been attempted using the Kriging technique [24], with radial basis function 
(RBF) as an interpolating function to enforce compatibility between the body parts during personalisation. In this 
approach, landmarks (control points or CPs) on the skin and skeleton/joints are identified on the baseline HBM 
(as the source) and their locations on target HBM are specified. The source and target landmarks should have a 
one-to-one correspondence between them. A 3-D displacement field throughout the entire space of human 
geometry is built. This displacement field is then applied to the baseline HBM to transform the source nodes to 
generate the target HBM. Appreciating the advantages and identifying the challenges related to this approach 
has been the first step for the development of new techniques for the personalisation of the HBMs. 

Jolivet et al. [24] compared the performance of kriging and moving least square (MLS) [25] methods for the 
personalisation of HBMs. The authors observed that Kriging can be computationally expensive when many control 
points are used, especially for the detailed target geometry that is needed when the shape of bones and skin are 
to be captured, as is the case in HBMs. It can also lead to element quality issues (including inverted elements), 
preventing the use of these models for FE simulation. The best results (with similar distances to the target, i.e. 
less than 1.5 mm on average) were obtained for the MLS using a control spline formed by the control points and 
the kriging method using some relaxation in the target definition (nugget effect). However, the two approaches 
had very different computational costs: in some cases, the MLS was so computationally expensive that it would 
make its interactive use impracticable; by contrast, Kriging-based transformations were relatively inexpensive. 

Janak et al. [26] use a strategy combining spatial subdivision and iterative subsampling that lowers 
computational costs and enables the creation of usable models. A set of control points (CPs), which consist of a 
mix of global (external geometry) and local (internal geometry), is used. They do not use CPs to modify the mesh 
internal to the organs, which are subsequently modified based on the resultant effects of exterior mesh 
deformations. Smoothing techniques are used to reduce the distortion of elements at the boundary. Subsampling 
and subdivision parameters, such as number of subdivisions, number of nodes per subdivision, and parameters 
to control mesh distortion at the boundaries of subdivisions, are tuned to ensure a good quality mesh in the final 
model. The paper suggested that the criteria that could help to select control points should be evolved. They 
discussed the interrelationship between the spatial distribution of control points, smoothness of the 
transformation, effects on the HBM element quality, need for relaxation in target definition, computational cost, 
and biomechanical response, all of which needed to be studied to help make optimal choices. 

Hwang et al. [27] describe a mesh morphing method for the rapid generation of parametric HBMs based on 
external body surface geometry. Landmark-based RBF interpolation functions were used to convert the base HBM 
to other geometries. However, the algorithm takes two hours to generate the results. It also has a template-based 
HBM constraint that works only with the THUMS v 4.01 version. In a subsequent paper, Hwang et al. [28] 
employed a mesh morphing method to rapidly develop parametric HBMs that can represent a wide range of 
anthropometry. They developed Parametric THUMS (P-THUMS), which took age, sex, stature and BMI as input, 
and also generated Subject-specific THUMS (S-THUMS). They then compared the simulated results with post-
mortem human subjects (PMHS) test data for four side-impact tests with two male PMHS of different body sizes. 
They showed that the P-THUMS exhibited a better correlation. The method took about 1.5 hours on a 64-bit Intel® 
Xeon® CPU with 16 GB of RAM to generate each target HBM. Overall, 2% elements fell below the Jacobian value 
of 0.7. The morphing process is computationally less expensive than other RBF-based techniques but still takes 
time in the order of hours as it was employed individually on ten body regions, each containing up to 10,000 
landmarks. 

Zhang et al. [29] improved the mesh morphing method presented by [28] using an RBF based on Thin Plate 
Spline function (RBF-TPS). The body was divided into five regions and morphed separately, then integrated to 
generate the final human model. This improved the time complexity of the mesh morphing technique. For the 
morphed models, less than 3% shell elements had Jacobian values less than 0.7. It took about 10 minutes for 
generating a morphed model from the baseline using a contemporary 8-core PC. 

Larsson et al. [30] personalised the SAFER v9 HBM [20-21], representing a 50th percentile male, into two elderly 
females based on age, sex, stature and BMI parameters using the RBF method proposed by [29] to enhance 
individual kinematics prediction in a side impact. The results revealed that the morphed models showed better 
correlation with human body kinematics than the baseline HBM. Larsson et al. [31] morphed the same baseline 
HBM (SAFER v9 HBM) into 27 females and 27 males of different anthropometries. PIPER and UMTRI Parametric 
HBM64 were the two key HBM morphing tools used. While both methods modify the shape of a HBM using target 

IRC-24-15 IRCOBI conference 2024

32



anthropometric parameters as input, they differ in how they personalise the HBM. The PIPER interface allows 
more details and a more convenient interface to specify target anthropometric parameters at the time of 
morphing, but it does not morph the internal body parts like, say, the rib cage consistent with age, sex or BMI 
parameters. The UMTRI HBM morphing takes age, sex, BMI and stature as input parameters and uses that to 
directly personalise the human body.  

Liu et al. [32] presented a methodology to derive an adult male HBM, with the aim of studying seating 
discomfort, starting from the PIPER Child model, with the skin surface, spine and pelvis as targets. The geometry 
of the skeleton and skin of the derived model are quite close to the source data, with a distance error of less than 
2.3 mm on the skeleton and an error of 7.6 mm on the skin, on average. No negative volume elements were 
detected in the morphed model. However, the Jacobian mesh quality of the generated model was found to be 
deteriorated compared to the original Child model.  

John et al. [33] developed a new set of FE-HBMs (from average female 50F) for the analysis of sex-specific 
differences in injuries and to achieve a balance between computational overhead and the finer details in the 
model using mesh morphing. The body mesh was segmented and morphing was performed sequentially for 
efficient processing. 

Li et al. [34] introduced a novel and efficient landmark-free method for personalising HBMs using image 
registration. This automated approach allows for rapid personalisation of HBMs to new subjects, incorporating 
the morphing of both the external body shape and skeletons to target body shapes of skin and skeleton generated 
using SMPL [35] and OSSO [36]. The resulting personalised HBMs have element quality comparable to the 
baseline. The image registration-based morphing method consists of three modules: (i) pre-processing; (ii) image 
registration pipeline; and (iii) post-processing. Pre-processing involves converting the skin and skeleton of the 
human body into binary images through voxelisation. The pipeline uses Demons registration to obtain a 
displacement field that represents the anatomical differences between the baseline HBM and target subject, 
which is then used to morph the baseline into a personalised HBM. Post-processing assesses the accuracy of the 
personalisation. 

Personalising HBMs will encounter computational challenges, especially when using techniques like Kriging, 
RBF and moving least squares. Achieving a balance between computational complexity and efficiency remains a 
central challenge for accurate and swift HBM personalisation. Also, the requirement of specific baseline models 
for personalisation can impose constraints on the flexibility and generalisation of the personalisation process. 
Moreover, relying on particular HBM templates limits applicability, emphasising the challenge of accommodating 
diverse anthropometric characteristics. A computationally efficient, near real-time method is presented here by 
implementing a graph encoding that drives the sequence of operation. The use of stick-diagram type contour 
control lines, sectioning planes which are locally perpendicular to these lines, and Delauney Tetrahedralisation 
leads to an efficient encoding of the process of personalisation. The end process has minimal mesh quality 
degradation and runs in under 60 s on a standard workstation when evaluated with nine test cases. 

II. METHODS 

In a bid to address the limitations of previous approaches, a contour-based approach for the 
personalisation of HBMs was used. This method was introduced by Jani et al. [37-38] and later by Chhabra et al. 
[39] to reposition HBMs and create Posture-Specific HBMs. One of the key advantages of this methodology is its 
ability to personalise using independent scale factors for different body segments as well as from specified 
anthropometric parameters. Global geometric transformations are skirted in this approach and transformations 
are applied on a subset of contour points, and the HBM mesh is repositioned as a consequence of movement of 
contour points. The algorithm aims to keep the number of elements failing the mesh quality criteria kept close to 
that of the baseline HBM and tends to maintain the Shell Jacobian ratio [40-42] greater than 0.7, aspect ratio less 
than 3, interior angles within 20-160 degrees for hexahedral elements and between 15-150 degrees tetrahedral 
elements, for at least 95% of the elements [63-65]. The number of elements failing the criteria remains close to 
that in the baseline HBM. This approach has been implemented in the PIPER toolkit under the Contour 
Personalisation module. The proposed methodology comprises five steps, as shown in Fig. 1. 
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Fig. 1. Complete Pipeline of the HBM Modification methodology, Personalisation (Steps 1 to 4) followed by Repositioning 
(Step 5). 

 

Step 1: Contour Generation 

The first step involves generating a curve, called the contour control line (CCL or ContourCL shown by a white line 
in Fig. 2(b)), by joining a set of specially chosen anatomical landmarks, as detailed in [39]. These landmarks are 
manually selected from the set of bone nodes using the landmark picking tool available in the PIPER software 
framework [58-59]. The ContourCL is made of either linear segments or cubic splines for each body region (Fig. 
2(b)). Body regions with long bones such as upper arms, forearms, thighs and calves have a linear ContourCL 
element associated with them, whereas joints have a spline ContourCL element associated with them. The 
vertebral column has three spline ContourCL elements associated with it, one each for the cervical, thoracic and 
lumbar regions. A body region or joint can also be associated with a point rather than a line.  

 
          (a)      (b)              (c) 

Fig. 2. (a) The ContourCL tree structure along with (b) the ContourCL curve (white lines inside the HBM), and (c) Contours 
generated using the ContourCL curve for the THUMS AM50 v4 Pedestrian HBM. 

The ContourCL set is stored as a tree data structure (Fig. 2(a)) in which every node is either a body region or a 
joint. Every joint node has a child body region node, whereas a body region can have many children joint nodes. 
The root node is the pelvis, registered with the mid superior point on the sacral plate (centre of sacrum). It has 
three children joints: pelvic joint, left hip and right hip. To illustrate the notion of the CCL, the CCL node of the 
pelvic joint has the lumbar body region as its immediate child node, which has the thorax joint node as the child 
node, which in turn has the thorax body region node as its child. The Thorax body region has three child nodes: 
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the left and right shoulder joints, and the cervical joint. In this manner, all body regions and joints of the body are 
connected through this CCL structure (Fig. 2(a)). 

First, polygonal curves are generated on the HBM by the intersection of the exterior surface of the body with 
sectional planes perpendicular to the ContourCL curve, consisting of flesh nodes in each plane. Contours are then 
obtained by scaling these polygonal curves radially outward by 5% to ensure that all HBM nodes are contained 
inside the surface of these contours (Fig. 2(c)). 

Step 2: Delaunay Tetrahedralisation and Node Mapping 
Once the contours enclosing the HBM have been generated, Delaunay Tetrahedralisation is carried out for the 
space enclosed by these contours using TetGen [43]. This generates a partition of the space into a set of 
tetrahedrons. The partition is a unique partition of the space [44] characterised by the circumsphere of no 
tetrahedron not containing any other point. 

All the HBM nodes inside the space defined by the contours are hence guaranteed to be in exactly one 
tetrahedron in the generated partition. The nodes are mapped to the respective tetrahedrons they are in, and 
the volume coordinates [45] of the node inside the tetrahedron are computed for use later in the inverse mapping 
after the contours are translated and rotated for repositioning, as in [37–38][46], or for personalisation. 

Step 3: Contour Transformation 
This work deals with personalisation of the HBM based on one of the following inputs. 

a. Target-based Personalisation: here, target anthropometric parameters are taken as input for personalisation 
of the HBM. This can be done in one of the following two ways: 
i. given the weight and height as input, a defined set of parameters can be predicted using regression 

modeling with databases such as the ADULT Dataset (ANSUR) [47], Child Dataset (SNYDER) [48], or Adult 
Dataset (CCANTHRO) [62]; 

ii. if a 3D Human Body surface scan is available, Machine Learning (ML) techniques can be applied to the 
point cloud to detect the required parameters using a landmarks-based approach [49] or using different 
parametric models [50-52] along with model registration [53-54]. 

Once the target anthropometric parameters are known, factors by which these parameters are to be 
modified with respect to the original HBM can be computed. 

b. Scale-based Personalisation: alternatively, factors to scale length or circumference type anthropometric 
parameters of individual body segments can be directly used as input to personalise the HBM. 

Length Personalisation 

Body regions of the HBM are separated at specific landmarks on the body skeleton. Contour transformation for 
length-based personalisation of a body region involves scaling the distance between the contours of the body 
regions. This involves the following steps. 

a) Modification of contours of the body region: 

Here, the ContourCL element of the body segment is scaled to the anthropometric measure and the spacing 
between the contours is changed accordingly. 

In this step, the linear and spline-based CCL elements are handled differently. For linear CCL elements, the 
element length is changed as per the scale factor and the contours are redistributed in the element 
proportionally. Figure 3((a), (b), (c)) shows how the femur, represented by a linear element in the CCL, is scaled 
by a factor of 1.2 along its length by uniformly increasing the spacing between them, and translating knee and 
lower leg contours in the same direction 

For the spline element, the shape of the spline needs to be retained to preserve the shape of the body region. 
Each spine zone is represented as a cubic spline and four control points are associated with it. In order to 
maintain continuity with adjacent body regions, the slopes at the start and at the end are not altered, and the 
intermediate control points are repositioned to achieve the desired length. The original contours are then 
positioned on the modified spline in the same proportion. 

IRC-24-15 IRCOBI conference 2024

35



Figure 3(d) shows how the knee, represented by a spline element, is scaled by a similar factor. At the start and 
at the end, the spline representing the knee continues to be tangential to the thigh and the lower leg CCL 
elements, because the knee CCL element merges with the distal end of the thigh and the proximal end of the 
lower leg.  

     
(a)   (b)     (c)     (d) 

Fig. 3. For the PIPER Child HBM: (a) Original Left Thigh, its CCL with contours (red), (b) Personalised contours (green): Scaled 
Left Thigh contours along with translated left knee and lower left leg contours, (c) Scaled Left Thigh with the Right Thigh 
remaining unscaled, and (d) Knee Spline Length scaled 1.5 times. 

b) Translation of child body regions: 

Contours of its child segments on the tree are translated as needed. For both the types of CCL elements (linear 
and spline type), the movement of the last contour is captured, and all child regions are translated by that 
vector. Figure 3 shows how this is implemented for linear and spline elements, respectively. 

Circumference Personalisation 
The method of scaling circumference differs from length scaling. Consider the case where the circumferential 
scaling factor a body region is s0, and those of the regions adjacent to it are s1 and s2 (Fig. 4(a)). In order to maintain 
continuity at the region interfaces, it is necessary to implement non-uniform scaling of the circumference of the 
contours. In this work, quadratic interpolation of the circumferential scale factors is done within the above 
constraints. Figure 4((c), (d)) shows the results when the contours of one of the regions are scaled 
circumferentially by 1.2 while those of the adjacent regions are not.  

 
     (a)     (b)       (c)             (d) 

Fig. 4. (a) Scaling factors of neighbouring body regions, and illustration of non-uniform scaling of contours (for the cases s1 
< s0 > s2 , s1 = s2);  Circumference-based personalisation of the lower leg of the Piper Child HBM: (b) Original Left lower leg, 
and the CCL with contours, (c) Original (red) and Personalised (green) contours along with original knee and lower leg 
model, and (d) Left lower leg after scaling. 

Step 4: Inverse Delaunay Mapping for Target Model Generation 
In this step the flesh and bone nodes are transformed. This step is based on the principles of volume ratio 
preservation proposed by [37-38][46]. In step 2, a set of Delaunay tetrahedrons and the volume coordinates of 
all the flesh and bone nodes in these tetrahedrons are computed. At this stage, the contours have been 
transformed, and the vertices of the tetrahedrons have thus moved. New coordinates of the bone/flesh nodes 
are then computed using the stored volume coordinates and the modified tetrahedral vertices. Thus, the HBM 
nodes are repositioned, generating the target-specific HBM. 
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Step 5: Repositioning Using Target Joint Angles 
Once the HBM has been personalised using the anthropometric targets, it is then repositioned to target joint 
angles using the same contour-based approach used by [39] to generate a posture-specific HBM (PS-HBM). The 
target joint angles can be obtained from the images or 3-D point clouds of the target human using computer 
vision and machine learning techniques [55]. Alternatively, these angles can also be obtained from direct physical 
measurements. 

For repositioning at the joints, bones undergo a rigid body transformation. Hence, the Delaunay 
Tetrahedralisation must be done differently from the case of anthropometric personalisation. Repositioning the 
HBM at the joint angles requires: (a) calculation of rotation angle using the current joint angle and the target joint 
angle; (b) Delaunay Tetrahedralisation and mapping of flesh nodes; (c) Contour Deformation as per the joint 
rotation angles; (d) bone rotations; and (e) Inverse Delaunay Transformation to generate flesh nodes. 

a) Calculation of joint rotation angles: 
As previously discussed in Contour Generation, a joint element in the ContourCL tree is a cubic spline. The 
spline is defined using two end-points (𝑝𝑝1,  𝑝𝑝2) and tangent vectors at these points (𝑉𝑉1,  𝑉𝑉2). The body region 
is rotated about the joint’s centre and axis of rotation (defined for each joint based on anatomical landmarks). 
The steps involved are as follows: 

1. Get the points 𝑡𝑡1 and 𝑡𝑡2 at some distance from 𝑝𝑝1 and 𝑝𝑝2 along the tangents 𝑉𝑉1 and 𝑉𝑉2, respectively. 
2. Project 𝑡𝑡1 and 𝑡𝑡2 on a plane perpendicular to the axis of rotation and get the points 𝑇𝑇1 and 𝑇𝑇2, respectively 

(Fig. 5(a)). 
3. Obtain 𝑂𝑂, the intersection of the axis of rotation and the plane. 
4. Calculate the angle 𝑇𝑇1𝑂𝑂𝑇𝑇2 and calculate the Joint Rotation Angle as (Target Joint Angle −𝑇𝑇1𝑂𝑂𝑇𝑇2). 

b) The Delaunay Tetrahedralisation for repositioning is done similar to that for personalisation. However, since 
the bones are not to be modified, tetrahedralisation is done using the external contour nodes and the external 
surface of the bones. As a result, the enclosed space which is the flesh, is partitioned into tetrahedrons. Flesh 
nodes are then mapped to these tetrahedrons, and the volume coordinates computed as in Step 2. 

c) Contour Deformation as per the joint rotation angles: 

The rotation for each contour in the joint region varies with its distance from one end, that is, the spline 
parameter value (s-value) of that contour. Once the contours are deformed, the flesh nodes between skin and 
bones are repositioned. The deformation of contours of a joint region depends on the type of joint, the plane 
of rotation, and the anatomical deformation of skin. Hence, the methods coded for contour deformation 
change from joint to joint. The process is explained below, using the knee joint flexion as an example. 

 
(a)                                            (b)                                 (c)   (d) 

Fig. 5. Repositioning at the knee joint of THUMS AM50 v4.0 Pedestrian HBM: (a) Joint Rotation Angle Calculation;  
(b) Contour Generation; (c) Contour Deformation; and (d) Repositioned Knee Joint. 

The knee joint spline ContourCL (Fig. 5(a)) is created between the points - �1, distal femur landmark (DFL) and  
�2, proximal tibia landmark (PTL). The knee joint rotation centre is defined by the line joining the medial and 
lateral condyle landmarks on the femur bone and is used to rotate the lower leg bones. There are 15 contours 
defined in the knee region. Each of these contours is rotated about the knee joint rotation centre by an amount 
given by Eq. (1):         
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𝜃𝜃� = 𝑠𝑠� ⋅ �                                                                                                                  (1) 

where,  
𝜃𝜃 ≡ the joint rotation angle  
𝑠𝑠𝑖𝑖 ≡ spline parameter value of the ith contour  
𝜃𝜃𝑖𝑖 ≡ rotation angle for the ith contour 

The transformed contours are shown in Fig. 5(c). 
d) The bones of the lower leg, tibia and fibula are then rotated about the centre of rotation of the knee. The 

patellofemoral motion includes superior/inferior glide, medial and lateral glide, medial and lateral tilt, and 
medial and lateral rotation [56]. These motions were measured against tibiofemoral flexion and reported in 
Zavatsky et al. [57]. These data are used to define an affine transformation, which is applied to the patella. 

e) At this stage the contours, as well as the bones, have been transformed, the flesh nodes have been mapped 
in the tetrahedrons created in step ‘b’ and their volume coordinates are known. New coordinates of the flesh 
nodes are obtained by inverse mapping using the volume coordinates and the modified locations of the 
tetrahedral vertices. This completes the rotation at the joint. The leg after rotation at the knee joint is shown 
in Fig. 5(d). 

The Implementation Framework 

The Piper Framework [58-59] provides a toolkit for personalisation and repositioning of FE-HBMs. It provides an 
interface for loading HBMs, interacting with them, and manipulating them. Following are some features 
available in PIPER: 

1. Creating and Exporting Generic Metadata, Landmark Metadata and Entities. 
2. Editing and Exporting ContourCL. 
3. Regression Module for Anthro Params Prediction.  
4. Contour Module consisting of functionalities for –  

a. Contour Generation 
b. Contour based Repositioning 
c. Contour based Personalisation using Uniform Scaling Factor and Using Predicted Anthropometric 

Parameters 
5. Inverse Delaunay Mapping 

The current paper describes the contour-based personalisation technique in the PIPER framework, which has 
been reformulated based on the CCL structure and now works stably to work for all HBMs. It also works directly 
with 2D/3D images as input, leading to a more robust and efficient methodology with reduced dependence on 
heuristics. 

III. RESULTS 

The THUMS AM50 v4 Pedestrian, the GHBMC M50−O, and the THUMS AM50 v7 Occupant HBMs were 
used to demonstrate the personalisation process. Personalisation was done with a uniform scaling of 10% and 
20%, and based on target anthropometric parameters generated by the PIPER Regression Module [60]. The first 
two demonstrate the personalization process for uniform scaling up to 99 percentile population (20% scaling) and 
the third case is of non-uniform scaling with specified anthropometry. It is also aimed at demonstrating that the 
process, which works incrementally for each body region, gives good results and does not produce penetrations 
or significant distortions at the joints. Table I summarises the cases for which the technique has been 
demonstrated. 

 
TABLE I 

CASES PERSONALISED 
Case No. Base Model Personalisation target details 

1 THUMS AM50 v4 Pedestrian 
THUMS AM50 v4 Pedestrian 
THUMS AM50 v4 Pedestrian 

Target weight 80 kg, Ht 180 cm, Reference database: ANSUR 
2 Uniform 10% 
3 Uniform 20% 
4 GHBMC M50−O Target weight 80 kg, Ht 180 cm, Reference database: ANSUR 
5 GHBMC M50−O Uniform 10% 
6 GHBMC M50−O Uniform 20% 
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7 THUMS AM50 v7 Occupant Target weight 80 kg, Ht 180 cm, Reference database: ANSUR 
8 THUMS AM50 v7 Occupant Uniform 10% 
9 THUMS AM50 v7 Occupant Uniform 20% 

 
Fig. 7. Left to right: original THUMS v4 AM50 Pedestrian Model (TPM), Target-Personalised TPM (Case 1),  
TPM Uniformly Scaled by 10% (Case 2), TPM Uniformly Scaled by 20% (Case 3). 

 
Fig. 8. Left to right: original GHBMC M50−O Model (GM), Target-Personalised GM (Case 4), GM Uniformly Scaled by 10% 
(Case 5), GM Uniformly Scaled by 20% (Case 6). 

 
Fig. 9. Left to right: original THUMS v7 AM50 Occupant Model (TOM), Target-Personalised TOM (Case 7),  
TOM Uniformly Scaled by 10% (Case 8), TOM Uniformly Scaled by 20% (Case 9).

Mesh quality metrics recommended by Burkhart et al. [63] for the models generated in the different cases is 1 
presented in Tables II−IV. Bad interior angles in the tables II-IV represent angles with large deviation from an ideal 2 
angle (60 degrees for tetrahedral elements and 90 degrees for hexahedral elements). In this paper, bad interior 3 
angles for tetrahedral elements have been taken to be lying outside the range of 15 to 150 degrees [64-65]. For 4 
the hexahedral elements, bad interior angles lie outside the range of 20 to 160 degrees [63]. 5 

 6 
TABLE II 

JACOBIAN MESH QUALITY TABLE FOR PERSONALISED THUMS V4 AM50 PEDESTRIAN HBM 
TOTAL NO. OF SHELL ELEMENTS: 443,126 
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TOTAL NO. OF SOLID ELEMENTS: 1,521,902 

Personalisation Case 
Minimum 

Shell 
Jacobian 

% of elements 
with 

Jacobian < 0.7 

Minimum 
Aspect 
Ratio 

% of elements 
with Aspect 

Ratio < 3 

% of tetrahedral 
elements with bad 

Interior Angles 

% of hexahedral 
elements with bad 

Interior Angles 
Original Model 0.098 2.38 1.002 2.27 0.0960 0.2890 

Case 1: Target Based 0.0975 2.99 1.006 3.22 0.2784 0.3319 
Case 2: Uniform Scaling of 10% 0.0927 2.62 1.013 2.47 0.1252 0.3149 
Case 3: Uniform Scaling of 20% 0.0925 3.02 1.015 2.69 0.1602 0.3460 

 7 
 8 

TABLE III 
JACOBIAN MESH QUALITY TABLE FOR PERSONALISED GHBMC M50−O HBM 

TOTAL NO. OF ELEMENTS CONSIDERED: 643,758 
TOTAL NO. OF SOLID ELEMENTS: 1,648,571 

Personalisation Case 
Minimum 

Shell 
Jacobian 

% of elements 
with 

Jacobian < 0.7 

Minimum 
Aspect 
Ratio 

% of elements 
with Aspect 

Ratio < 3 

% of tetrahedral 
elements with bad 

Interior Angles 

% of hexahedral 
elements with bad 

Interior Angles 
Original Model 0.151 4.54 1.002 7.11 0.5607 1.7649 

Case 4: Target Based -0.351 6.56 1.016 10.66 1.8876 2.2703 
Case 5: Uniform Scaling of 10% 0.159 5.13 1.010 7.93 0.6188 1.9161 
Case 6: Uniform Scaling of 20% -0.383 7.32 1.015 9.00 1.1376 2.4924 

 9 
 10 

TABLE IV 
JACOBIAN MESH QUALITY TABLE FOR PERSONALISED THUMS V7 AM50 OCCUPANT HBM 

TOTAL NO. OF ELEMENTS CONSIDERED: 452,728 
TOTAL NO. OF SOLID ELEMENTS: 1,691,965 

Personalisation Case 
Minimum 

Shell 
Jacobian 

% of elements 
with 

Jacobian < 0.7 

Minimum 
Aspect 
Ratio 

% of elements 
with Aspect 

Ratio < 3 

% of tetrahedral 
elements with bad 

Interior Angles 

% of hexahedral 
elements with bad 

Interior Angles 
Original Model 0.0988 3.51 1.016 3.18 0.2764 0.3254 

Case 7: Target Based 0.0888 5.26 1.031 4.69 0.7791 0.4786 
Case 8: Uniform Scaling of 10% 0.0974 3.93 1.029 3.43 0.2931 0.3435 
Case 9: Uniform Scaling of 20% 0.0953 4.61 1.022 3.89 0.3561 0.4043 

11 

The original weights for the THUMS v4 AM50 Pedestrian, GHBMC M50−O, and THUMS v7 AM50 Occupant 
models are 77 kg, 78.6 kg and 77 kg, respectively, with a stature of 175 cm. The targets used for generating the 
personalised HBMs (Figs 7−9) are generated from the PIPER regression module using the predictors of weight (80 
kg) and stature (180 cm). It is observed that the mesh quality of the whole-body personalised models have small 
degradation with respect to the original models. 

In the case of target-based personalisation, there was an increase of approximately 1.46% in the number 
of elements with a Jacobian ratio less than 0.7 compared to the baseline model. Additionally, there was an 
increase of around 2% in the number of elements with an aspect ratio less than 3. For tetrahedral and hexahedral 
elements, the increase in those with bad interior angles was 0.67% and 0.24%, respectively.  

In the 10% uniformly scaled models, only about 0.42% more elements failed the Jacobian and aspect ratio 
thresholds compared to the baseline. The increase in tetrahedral and hexahedral elements with bad interior 
angles was 0.035% and 0.065%, respectively. 

For the 20% uniformly scaled models, the increase in elements failing the Jacobian and aspect ratio 
thresholds was 1.51% and 1%, respectively. The additional elements with bad interior angles were around 0.24% 
for tetrahedral elements and 0.28% for hexahedral elements.  

In two of the cases (for the GHBMC M50-O model) the minimum Jacobian in the generated model is 
negative. We note that for this case the original model had a large number of elements (4.54%) having Jacobian 
below the usually desired threshold of 0.7 and the number of elements having aspect ratio greater than 3 

IRC-24-15 IRCOBI conference 2024

40



comprise of nearly 7.11% of total elements in the GHBMC baseline model. This fails the aspect ratio criterion as 
recommended by [65]. However, the personalisation process maintains the aspect ratio for nearly 90% of the 
elements in the personalised models. This is certainly a limitation, and ways to improve the results in this case 
are being investigated.  

All the other generated models were tested in the LS-DYNA environment for a stability run for 3ms, and 
no errors were reported during the same. To further test the suitability of the models, the case I generated model 
was configured in a car pedestrian crash situation with the Toyota Yaris model [61]. The impact was simulated at 
40kmph for a 200ms duration, on the left leg of the pedestrian. The simulation ran successfully, and Fig 10 (a) 
shows the pedestrian kinematics of the crash during the first 150ms. Failures were observed in the knee 
ligaments, and in the tibia and fibula bones (Figure 10 (b)). This demonstrates that the generated models are 
usable in crash simulations. 

 
(a) 

 
(b) 

Fig 10. (a) Kinematics obtained from the car pedestrian crash simulation (b) ligament and bone failures seen 
during the simulation 
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IV. DISCUSSION 

This approach is implemented and tested for the length and circumference personalisation of the Thigh, 
Calf, Foot, Lumbar, Thorax, Head, Upper arm, Forearm, Hand Body Regions and Hip, Knee, Ankle, Neck, Shoulder, 
Elbow, Wrist Joint Regions. 

In the initial implementation, each step of personalisation was executed sequentially for all body regions 
and joints, as per the structure outlined in the ContourCL line. This approach had significant computational 
demands, and the personalised HBM obtained had a highly distorted mesh with poor mesh quality parameters. 
This was addressed by implementing a heuristic order that maintained consistent mesh quality during the 
Delaunay transformation. The ContourCL tree was prepared with this heuristic. Also, the Delaunay 
Transformation and the inverse mapping were performed only once for the whole HBM instead of repeating 
these processes for each body region/joint. This optimised process has not only drastically (by as much as 50% in 
some cases)  reduced the computational time, but it was also observed that the elements failing the thresholds 
of mesh quality metrics were lesser in number. Further, through extensive testing, it was discovered that scaling 
the length of contours before scaling their circumference during contour personalisation yields better mesh 
quality.  

Hwang et al. [28], Jolivet [24] and Janak et al. [26] use RBF and Kriging-based techniques to personalise 
HBMs. They reported [26] that the quality of results improves with the number of control points (landmarks) 
used. They reported good results when more than 200,000 control points were used. In the method adopted in 
this paper, only 48 landmarks are used to define the CCL. Consequently, the method is also computationally 
faster, and it takes only c. 60 s to personalise the whole model on an Intel Core i7 CPU with 16 GB of RAM; in the 
studies [27-28], a time of c. 1.5–3 hours was reported for a similar personalisation on an Intel Xeon CPU with 16 
GB of RAM. Further, post-processing by mesh optimisation to improve the output mesh quality [26-28][34] is not 
an essential requirement in the method proposed in this paper because the degradation in the Jacobian is limited 
to 1% of the elements. It’s also worth noting that manual post-processing, as demonstrated by [33], to remove 
penetrations between elements is time-consuming, typically requiring approximately 4–6 hours per target model. 
The presented method in this paper does not require manual post-processing for removing penetrations or mesh 
smoothening. 

V. CONCLUSION  

This paper describes a contour-based approach for the personalisation of HBMs based on target 
anthropometric parameters. The methodology generates HBMs with only a minimal difference in the mesh 
quality of their elements when compared to the original baseline HBM. One significant advantage of the proposed 
methodology is its ability to perform target-based personalisation on different body and joint regions, as well as 
scale-based personalisation using a user-defined scaling factor. The generated models can be easily repositioned 
using target joint angles to represent a given target posture. Also, most of the computations are performed on 
contour points rather than on the FE mesh, which makes this method computationally fast and makes it feasible 
to use in practice as a real-time interface. 

This contour-based personalisation approach is different from the contour-based repositioning approach 
[37-39] only in the way Delaunay Tetrahedralisation (DT) and node mapping is performed. While repositioning, 
the bones undergo only a rigid body motion, while in personalization, their size changes. Hence, for repositioning, 
the annular region between the skin and the bones needs to go through a non-affine transformation. Hence, 
during repositioning, the contour nodes as well as the outer surface of the bone serve as reference for DT – to 
map all flesh nodes in the tetrahedrons generated. During personalization, only the contour nodes are used in 
the DT stage, so even though bones and flesh are very different in their material properties, they are personalized 
in the same way.  

Since, the bones are not modified explicitly, this method currently does not incorporate the 
personalisation of bones forms and FE material properties. The bones and internal organs are morphed according 
to the deformation of contours. Until now, the focus of the work has been the accuracy of target anthropometric 
parameters, the elemental mesh quality, and to reduce the computational cost of the process. The work of 
personalisation of bones using the contour-based paradigm is ongoing. 
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The methodology proposed in this study is implemented in the Contour Module present in the PIPER 
Software, and the personalised model was used in LS-DYNA to test for stable dynamic simulations. 
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