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Object Detection for Ice Surface Localisation in Youth Hockey

Parisa Dehghan, Amirhossein Azadi, Allison Clouthier, T. Blaine Hoshizaki

Abstract Sports-related brain injury is a pressing issue, particularly in high-impact sports like ice hockey
where impact velocity plays an important role in determining the magnitude of head impacts and subsequent risk
of injury. However, existing methods for measuring impact velocity, such as GPS tracking and manual video
analysis, are costly making them inaccessible, especially for youth leagues. This study introduces an automated,
cost-effective method using computer vision to determine player velocity from 2D video. The initial step involves
localising the field, achieved through a novel approach employing YOLOV5 to detect specific landmarks on the ice
surface. With a dataset of over 9,900 annotated images, YOLOv5 demonstrates exceptional performance,
achieving an F1 score and precision-recall of 0.99 at an 80% confidence level, and mAP scores of 98.5% and 64.5%
at loU thresholds of 0.5 and 0.5:0.95, respectively. By detecting at least four landmarks per frame, homography
matrices were calculated to obtain a top-down view, completing the localisation process. This approach achieved
an average loU of 0.96, validating its accuracy in field localisation and demonstrating its potential for improving
accessibility and cost-efficiency in measuring impact velocity in ice hockey.
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I. INTRODUCTION

For the most part, the majority of sports-related traumatic brain injuries (TBI) that contribute to mental health
deficits and increased risk for neurodegenerative disease do not result in loss of consciousness or serious
symptoms, especially in youth sport and remain under reported. Effective diagnosis, management and prevention
requires accurate and reliable injury data. Automated data capture technology using video provides an
opportunity to obtain biomechanical measures of head impact characteristics to measure brain tissue damage in
sport. In ice hockey, the incidence of concussion is notably high, reaching up to 8.8 concussions per 100 athletic
exposures [3]. Despite this, the actual incidence among youth hockey players remains uncertain due to ineffective
monitoring of this demographic [4]. Hockey is recognised as one of the sports with the highest rates of head injury
among youth. Athletes aged 5 to 18 years account for 65% of all sports and recreation-related head injuries
treated in US emergency departments [5]. Repetitive head impacts (RHI), both high and low magnitude, continue
to be associated with long-term brain health issues including depression, early cognitive decline, and chronic
brain disease and chronic traumatic encephalopathy (CTE) [6-7].

Biomechanical measurements including impact velocity, location, mass, compliance, and direction can be used to
obtain the dynamic response of the head and subsequently calculate potential brain tissue damage [9-11]. The
magnitude and interaction of these parameters collectively influences brain motion during impact. Impact
velocity is an important variable used to calculate the amount of energy transferred to the brain during impact
and resulting injury severity [12]. Various methods, including GPS tracking devices [13-14], video analysis [15-16],
time gates [17], model-based image matching (MBIM) [18], and Doppler effect devices [19], have been employed
to measure velocity in sports. However, these methods are expensive and necessitate specialised technology, and
few sports groups, especially youth, have access to such technology [20]. Manual video analysis is time-consuming
and labor-intensive, making them impractical for use by sport organizations to monitor head trauma or creating
the large databases needed for research. An objective, low-cost method for accurately documenting head impact
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characteristics during games, especially at the youth level is necessary. Automating data collection systems,
facilitated by the application of computer vision techniques using 2D video, presents an opportunity to document
head impact characteristics for a large number of sports and athletes. A challenging but important contributor to
brain trauma magnitude involves the calculation of player velocity at the time of impact. Accurate estimation of
player velocities requires detection, identification, and tracking of players to monitor their trajectories across the
field [21]. Players’ absolute velocities can be obtained using a top-down view of the ice surface to establish
location. The vast majority of game video used in youth sport do not have a top-down view of the playing surface.
However, a top-down view can be achieved using homography, a transformation matrix that maps each frame
onto a reference plane. Localising the ice rink in each frame is essential for this calculation.

To calculate head impact trauma in sport the accuracy of a novel method for ice rink localisation using various
angles from 2-d video to obtain player head impact velocities was investigated. Calculating player velocities is
critical to automating head impact data capture in sports like ice hockey. Automating head trauma data collection
from video provides for economical head impact documentation and the creation of a comprehensive datasets.
Big data supports research investigating the associations between impact characteristics and clinical outcomes
contributing to our understanding of brain trauma and injury.

This paper utilised game footage from the primary broadcast camera of youth games (peewee, midget, and
Atom), positioned in the arena stands above the centre ice line. A novel method has been proposed in this paper
for localising the ice surface, which uses an object detection algorithm to detect landmarks on the ice surface.
Specifically, we employed YOLOv5[23] for landmark detection on the ice rink, aiming to identify at least four
points to localise the rink in the top view frame[22]. This paper includes: a) Proposing a novel localisation method
utilising YOLOVS [23] for field landmark detection, b) introducing an ice rink dataset comprising over 9,000 images
containing landmarks of the playing surface and c) leveraging computer vision techniques in developing an
objective tool for measuring brain trauma in ice hockey.

The prevention of sports-related TBI is an important public health concern. Technologies such as deep neural
networks and computer vision can facilitate the creation of extensive datasets to investigate the complex
interplay between head trauma and mental health. Furthermore, it only requires a 2D video of the game and
does not necessitate specialised equipment, making it accessible to youth participants who make up the majority
of ice hockey players [5].

Using broadcast footage for computer vision tasks eliminates the need for additional specialised hardware to
produce analytics. However, utilising broadcast footage poses its own unique challenges. Cameras used in
broadcasts frequently pan, tilt, and zoom to follow the action, necessitating compensation for this movement in
the analytics process. This becomes simpler when videos are captured from stationary cameras. Since hockey
broadcast videos often lack camera parameters, determining location information must be automated from the
video feed itself. Consequently, rink registration is conducted to determine how pixels in video frames correspond
to the top-down view of the rink. The sports field localisation task involves determining the planar transform
between the view of the hockey rink captured in the broadcast video frame and an overhead view of a hockey
rink template [24-25]. This transform is defined by a homography matrix [22] between the two views of the plane
of the ice surface. The homography matrix, H, is a 3 x 3 matrix with eight degrees of freedom, representing the
transformation between two planes, typically scaled by a factor s. Equation 1 provides an example of a standard
homography matrix, which establishes the correspondence between a point [x' y’ 1]T on the rink model and a
point [x y 1]T on the ice surface in the broadcast frame. The elements of H incorporate translation, rotation, and
scale factors [26]. Our method dynamically derives the homography matrix for each video frame based on visible
landmarks, allowing for accurate transformation to a top-down view. This frame-specific computation ensures
precise localisation and alignment, which are essential for tasks like velocity calculation and player tracking.

(Eq. 1)

A standard method for computing the transformation between the plane of the ice surface in the broadcast
video and the rink model involves detecting field markings in the frame, including points, lines, and line
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intersections, and matching them with their counterparts in the model. After the detection of multiple key points
or landmarks in the frame, the RANSAC algorithm is employed. This involves the selection of a random subset of
four points from these landmarks and the estimation of the homography matrix using them, typically through the
Direct Linear Transform (DLT) algorithm [26]. The fit of all detected landmarks to this estimated homography is
then evaluated, with well-fitting points being classified as inliers. This iterative process ensures robustness, with
repetitions made multiple times using different sets of points. Ultimately, the homography with the highest
number of inliers is chosen. Through the utilisation of RANSAC, outliers are effectively managed, resulting in the
identification of the most accurate set of points for the homography and thereby rectifying perspective distortion
[26]. An illustration of this process is depicted in Fig. 1, demonstrating how an image appears when transformed
to the top-down view, as well as how the top-down template appears when transformed onto the image.

Fig. 1. Example of warping a video frame onto the overhead rink template (and vice versa) using
homography.

Several computer vision techniques have proposed various methods for the localisation of ice surface. A

method that combining point, line, and ellipse matches was used to estimate homography in ice hockey rinks,
building upon the DLT algorithm [27]. A VGG16 semantic segmentation network to detect lines and estimate the
camera position using branch and bound was also used [24]. Researchers have partitioned ice hockey footage
into video shots and utilised a ResNet18-based regressor to determine homography between each frame and the
ice-rink model [28]. Researchers have also employed the pix2pix network to extract lines from soccer broadcast
video and compared them with a database of synthetic edge images for field localisation [29-30]. [31] Lines were
identified and categorised on a soccer field [31], while a line segment detector to identify intersections and match
them to a template was utilised [32]. Zones from soccer and basketball datasets were detected initialising camera
pose estimation through a dictionary lookup and refining it with a spatial transformer network [33]. Reference
[34-36] utilised Semantic segmentation or keypoint segmentation was used for sports field localisation [34-36],
while a two-step method for refining homography estimates by combining the warped template and frame and
minimising estimation error has been proposed [37].
The diversity of approaches published in sports field localisation underscores the absence of consensus on an
optimal solution. This is compounded by the limited accessibility to algorithms and datasets from other research
groups, resulting in each new contribution introducing a novel approach instead of building upon existing
methods. Many projects achieve high accuracy using proprietary datasets, hindering meaningful comparisons.
Despite introducing various methods, recent advancements suggest that deep network architectures offer
superior performance with faster computation [38]. This study proposed a novel localisation method utilising
YOLOvV5 [23] as an object detection algorithm to identify landmarks on the ice surface, as detailed in the
methodology section. This presents an important step for accurately determining player velocity.

Il. METHODS

Data Collection

A dataset was created to support ice rink localisation techniques. This dataset comprised 9963 images capturing
youth ice hockey games at various age levels, including Novice, Peewee, and Atom matches. The images were
captured by a stationary camera positioned at the centre of the rink, which panned to capture all angles of the
play area during recording. The dataset offered comprehensive views of the ice surface and was diversified to
include frames where lines and pitches did not have perfect shapes. This diverse training data helped the model
generalise better and handle variations effectively. Each image was manually annotated using annotation
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software named Roboflow [39] to highlight eight distinct landmarks within the ice rink, treating each as a separate
object of interest. These landmarks encompass critical points such as the intersection of blue lines, goal lines, and
centre lines with the boards, the intersection of goal posts with goal lines, the intersection of centre face-off
circles with centre lines, and all face-off spots, as depicted in Fig.2. Well-defined guidelines were implemented to
ensure accuracy, and training was provided for the labelers, significantly minimizing potential errors. Once the
initial annotation was completed, another researcher reviewed a random sample of the annotations to check for
inconsistencies. During the annotation process, markings with similar shapes were grouped together. In the
programming section, it was described how each member of the same group was specified and categorised into
individual classes based on their relative positions on the ice surface. Bounding boxes were drawn around each
object during annotation to ensure accurate representation. The original images maintained an average size of
720 x 1280 pixels. The training process validation for this dataset is observed in Fig.3. This figure presents
annotated image samples, describing the classes defined in Figure 2 as they appear in each frame.

Fig.2. Top view of an ice rink with annotated landmarks labelled with their corresponding class names.

Fig.3. Ice surface's landmark dataset.
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Data Preprocessing

The hockey images underwent preprocessing to prepare them for use in the YOLOV5 object detection
algorithm. This process included resizing the images to 650 x 650 and applying filters to enhance contrast and
remove noise. Subsequently, the dataset was augmented by rotating and flipping images, increasing the number
of images to 14650. The images were randomly divided into two sets: training data (80%), and validation data
(20%). The training data were used to train the machine learning model. The validation data were withheld during
training and employed to provide an unbiased assessment of the model's performance throughout the training
process. This information was used to fine-tune the model's hyperparameters.

Training the YOLOv5 model

The subsequent stage involved using a dataset to train the YOLOv5 model for ice hockey object detection. YOLO
(You Only Look Once) is a prevalent deep learning-based algorithm for object detection known for its wide global
receptive field, grid division, anchor frame matching, and multi-semantic fusion detection mechanism. Unlike
traditional methods, which typically involve a multi-stage process of feature extraction followed by object
identification and classification using separate algorithms like sliding window approaches or region-based
methods such as R-CNN [40], YOLO directly predicts bounding boxes and object probabilities using Convolutional
Neural Networks (CNNs) [41], thereby significantly improving detection accuracy. YOLOVS, built on the PyTorch
[42] framework, boasts rapid detection speeds, reaching up to 140 frames per second. It incorporates the Mosaic
data augmentation technique from YOLOv4, enhancing the detection of small targets by combining input images
through random scaling, cropping, and arrangement. YOLOvV5 has four variants, YOLOv5s, YOLOv5m, YOLOVSI,
and YOLOv5x, each differing in network depth. Deeper networks yield more feature maps but also involve more
complex computations. In this study, YOLOv5s pretraining weights were employed for training. The training
process involved feeding images into the algorithm and adjusting neural network weights to improve its capability
in detecting and classifying landmarks on the ice rink.

Experimental Environment

The system used Windows 10 Pro with PyTorch (1.8.0) with an AMD Ryzen 9 3900X 12-core processor@3.8 GHz
with 32G memory CPU and a NVIDIA GeForce RTX 3090 GPU with CUDA (11.7).

Evaluation of the Object Detection Model

Once the YOLOV5 model had completed its training phase, it underwent evaluation using various metrics to
assess its performance, including precision, recall, and F1-score. Additionally, the loss of validation and loss of
training, representing the error between predicted and actual values during model training, were monitored, with
lower values indicating better performance. These metrics served as indicators of the accuracy and efficiency of
the model in detecting and classifying landmarks within the ice hockey images.

Precision, one of the essential components of the F1 score, measures the accuracy of positive predictions made

by the model, indicating how many of the predicted landmarks are correct. Mean Average Precision (mAP),
calculated at Intersection over Union (I0U) thresholds of 0.5 and 0.5-0.95, provided additional insight into the
accuracy of predicted bounding boxes. Recall evaluates the model's ability to find all the relevant landmarks,
indicating how many were successfully detected. The Fl-score is a combined measure of precision and recall,
providing a balanced assessment of the model's overall performance in detecting landmarks on the ice surface.
The precision-recall curve (PR) is another metric that evaluates the trade-off between precision and recall at
different confidence levels. These metrics collectively provided a comprehensive evaluation of the model's
effectiveness in detecting landmarks on the ice surface.
In this paper the following terms were defined as: True positive (TP) refers to instances where the model correctly
predicts the presence and location of a landmark within an image, with an IOU score exceeding 0.5. False positive
(FP) occurs when the model incorrectly predicts the presence of a landmark instance within an image. This may
happen if the model predicts a landmark where none exists or assigns a different label to the predicted landmark
compared to the ground truth. False negative (FN) arises when the model erroneously predicts the absence of a
landmark instance within an image with an 10U score below 0.5. This could occur if the model overlooks a
landmark instance present in the ground truth or assigns a smaller bounding box to the predicted landmark
compared to the ground truth.

113



IRC-24-23 IRCOBI conference 2024

Recall = —2
ecal = rp N’ (Eq. 2)
Precision= ———, (Eq. 3)
TP+FP

2*Precision*Recall
Fl-score= +*Precision*Reca (Eq. 4)

Precision+ Recall ’

By meticulously examining the true positive, false positive, and false negative parameters and their associated
scores, we can gain valuable insights into the model's performance. This process not only helped us identify areas
for improvement but also allowed us to refine the model's capabilities for more accurate landmark detection and
classification.

Programming

Once objects were detected across the frames, those containing at least four detected objects were selected.
The centre point of each bounding box enclosing these objects was identified to represent the coordinates of the
respective landmarks. In alignment with Fig. 2, landmarks with similar shapes were grouped into classes. A Python
script was developed to distinguish between different objects within the same class. This differentiation was
based on various factors, including the objects' relative coordinates to each other, their positions along the centre
line, and their relative placements within the image boundaries, such as mid-top or mid-bottom. For each
landmark on the ice surface, a subclass name was assigned, as illustrated in Fig. 4. After initial detection of each
object by YOLOVS in a frame, our programme specified the corresponding label for each subclass. Therefore, if
we have class four detected in a frame four times, our programme determined which one belongs to 4-right-top,
which one is 4-left-top, which one is 4-right-bottom, and which one is 4-left-bottom. It should be noted that
several landmarks are the same in Figure 2 and 4 however in Figure 4 the positions of each landmark is identified.

Fig .4. Reference frame including the landmarks with their true label according to their position.

A homography matrix was derived by accurately identifying correspondence between at least four points on a
top-view reference image and the game video. This matrix determined the transformation to map the current
view to the reference view. The top-view reference image had a size of 612 x 258 pixels. Application of this
transformation matrix to each game video frame effectively transformed them into a top-view perspective, thus
achieving localisation. Metrics that are used to evaluate sports field localisation are 10U 4 and
10U\ poe (Fig.5). I0U 4y measures the overlap between the ground truth part (red line) and the predicted
transformed region (yellow line) of the visible part of the field, while IOU,, 1,4 assesses the overlap for the entire
field area after transformation. It evaluates the overall accuracy of the entire scene's transformation from the
original perspective to the top-down view. By illustrating these metrics, Figure 5 helps clarify how effectively the
transformation process preserves the spatial relationships and alignment of landmarks in the top-down view. In
this paper, IOU , 4, Was used to evaluate our localisation method.
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Fig. 5. lllustration of 10U Part versus Whole, highlighting the distinction in bounding box overlap assessment
[43].

. RESULTS

The number of epochs was set to 300. In Figure 6, the performance of YOLOv5 on landmark’s detection is

presented through various metrics during training and validation. The curves depict the loss associated with
bounding box predictions (Train/Box Loss, Val/Box Loss), object presence predictions (Train/Obj Loss, Val/Obj
Loss), and class predictions (Train/Class Loss, Val/Class Loss), reflecting the model's ability to accurately predict
these parameters. Notably, in both training and validation, as epochs increased, the loss consistently decreased,
highlighting the network's robust performance and effective learning process. Upon evaluation, the YOLOV5
model achieved a validation precision score of 0.98 and a recall score of 0.97. The mAP_0.5 (mean Average
Precision at loU 50%) and mAP_0.5:0.95 (Mean Average Precision at loU 50% to 95% in increments of 0.05) of the
landmark classification model were 98.5% and 64.5%, respectively. As illustrated in Fig. 6, as the number of
epochs increased, the loss curve gradually stabilised, indicating improved model training effectiveness. These
results confirmed the effectiveness of our approach in accurately predicting landmarks from frames taken at
various camera angles. F1 and precision-recall curves, evaluating integrated Precision and Recall (PR) indices, are
depicted in Fig. 7. It is evident that almost all eight classes performed very well, with F1 and PR evaluations
achieving 0.99 at a confidence level of 80%. The spike observed in the Precision-Confidence Curve for the "2-
close" class can occur due to fluctuations in data distribution or the model's adjustments, and it usually smooths
out as training progresses. Overall accuracy and performance across all classes are the main concerns, and as long
as the trend shows improvement and stability, occasional spikes were considered acceptable.
Homography matrices were calculated and applied to each frame by correlating the detected landmarks with
their corresponding coordinates on the reference frame (see Fig. 2), enabling localisation. Subsequently, the IOU
score was computed, yielding an average of 96.1. This high IOU score indicates the accuracy of the localisation
process, affirming the method's effectiveness in precisely mapping objects to their respective landmarks on the
ice surface. Figures 8 and 9 depict test images from two video frames of youth games and their corresponding
warped frames in the top view, achieved through our network. Figures 8 and 9 demonstrate the accuracy of our
localisation and transformation process by comparing the detected landmarks in the original image (left) with the
transformed top-down view (right). Focusing on specific landmarks in the left image, they align precisely between
the original and transformed images. For instance, objects in class 6 in the left image correspond with their
locations in the top-down view on the right, overlaying correctly on the points at the top and bottom of the centre
circle, indicating high precision. It is noteworthy that this transformation provides a top-down view of the frame,
allowing us to calculate horizontal plane velocity, and does not include the vertical component.
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Fig. 6. Train and validation loss curves, mAP_0.5 and mAP_0.5:0.95 curves, precision curve, recall curve.

Fig. 7. Precision-Recall Curve, Precision-Confidence Curve, F1-Confidence Curve, Recall-Confidence Curve.

Fig. 8. Test image of a sample of a video frame including centre line.
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Fig. 9. Test image of a sample of a video frame recording on right side of the rink.

IV. DISCUSSION

Medical science professionals [44-46] have identified head trauma especially in youth contact sports as a
contributor to increases in mental health problems and risk of neurodegenerative disease. Youth, who represent
the vast majority of athletes playing sporting activities have few financial or clinical resources to effectively
monitor and manage head trauma. Impact velocity is an important characteristic of head impact severity with
accurate impact velocities necessary to obtain accurate head impact severity measures. A top-view frame of
players is essential for calculating accurate player plane velocity. This research investigated a novel method
employing object detection techniques from various angles using 2d video for localising the ice surface in youth
ice hockey games. This localisation enabled an accurate measurement of player velocity during head impacts, a
critical factor in determining the magnitude of impact and assessing brain trauma. The entire rink was mapped
by matching the visible landmarks from the current frame with those on the top-down view. Applying the
homography matrix ensureed the whole rink was accurately aligned, as shown in Figures 8 and 9. This study
yielded promising results, achieving an loU score of 0.96 and localising youth ice hockey players without needing
multiple cameras or specialised setups, which is described as excellent when compared to research in the field
[24,29,37]. It is important to note that the homography transformation is generally more accurate near the
reference points and might exhibit some error as we move further from the points of reference as a result the
extrapolation needed in those areas, The high loU score indicates that our overall transformation was accurate
across the entire rink. The accuracy of the transformation process will be accessed using the player’s coordinates
from the top-down view to calculate their horizontal velocities and compared direct measures of player horizontal
velocities.

The proposed method involves the application of biomechanical measures from 2d video to create large data sets
supporting the investigation of the relationship between head trauma and neurodegenerative disease. The
method employed to calculate impact velocities using 2d video support further development of an economic and
efficient method to identify and document head trauma, creating large data sets to contribute to research
designed to increase safety in sports medicine.

While our research has yielded promising results, it is essential to acknowledge its limitations. One such limitation
is the calculation of homography, which requires a minimum of four points in the frame. Frames where fewer
than four objects are detected are not applicable. However, in this study the cameras that record youth ice hockey
games typically provide a long-shot view, capturing at least four landmarks in most frames. Our model was also
trained on a sufficient number of images that accommodate most of the scenes and can capture enough
landmarks. To enhance the accuracy of our method, more landmarks could be added to the object detection
process, particularly in zoomed-in shots. This would ensure that the necessary points for homography calculation
are generally available and could be a potential area for future research.

V. CONCLUSION

Accurate measures of impact velocity in sport head injuries is fundamental to establishing associated risk of brain
injury. This research presents a novel method for localising the ice surface in youth ice hockey games employing
object detection techniques from various angles using 2 d video. By leveraging computer vision technology,
specifically YOLOv5 [23], we successfully detected landmarks on the ice surface, enabling accurate localisation
without requiring specialised setups or multiple camera arrays. Upon evaluation, the YOLOv5 model achieved a
validation precision score of 0.98 and a recall score of 0.97. The mAP (IOU[0.5]) and mAP (IOU [0.5: 0.95]) of the
landmark classification model were 98.5% and 64.5%, respectively. As the number of epochs increased, the loss
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curve gradually stabilised, indicating improved model training effectiveness. These results support the
effectiveness of our approach in accurately predicting landmarks from frames taken at various camera angles. F1
and precision-recall curves, evaluating integrated Precision and Recall (PR) indices, confirmed that almost all eight
classes perform exceptionally well, with F1 and PR evaluations achieving 0.99 at a confidence level of 80%. These
results validate the effectiveness of our approach in accurately predicting landmarks from frames taken at various
camera angles.

Subsequently, the 10U score was computed, yielding an average of 96.1. This high IOU score indicates the
accuracy of the localisation process, affirming the method's effectiveness in precisely mapping objects to their
respective landmarks on the ice surface. The study achieved promising results, with a high 10U score of 0.96,
indicating the accuracy of the localisation process.

The proposed method for obtaining impact velocities from various angles using 2 d video provides a promising
approach to documenting, managing and studying head impact velocity and the risk of brain injury in youth sport.
This study contributes to sports medicine by facilitating the measurement of player velocity during head impacts,
crucial for assessing brain trauma opening avenues for further analysis of player performance, injury risk
assessment, and trauma management in ice hockey.
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