
I. INTRODUCTION
Rapid head motion during sporting incidents can produce traumatic brain injury. Advancements in 

instrumented mouthguards (iMGs) have enabled the measurement of head kinematics during these incidents, 
producing objective biomechanical data at large scale [1]. The finite element (FE) brain models can use these 
kinematics data to estimate brain strain distribution across the brain [2]. However, the computational demands 
of FE brain simulations limit their application to rapid brain response prediction. To address this problem, 
researchers have developed pre-trained models using machine learning (ML) to calculate brain strain distribution 
[3-4]. However, currently these models cannot be deployed on iMGs, and for using them on the pitch-side, they 
require time-series signals of head kinematics, which cannot be transmitted reliably from iMGs in real-time. In 
this work, we propose an eXtreme Gradient Boosting (XGBoost) model, which uses two features from the head 
kinematics to calculate strain in the whole brain and 6 regions of interest (ROIs). The success of this model for 
accurate prediction of brain strain can address the costly computation of FE simulations and can allow for 
integration with the iMG system for near real-time prediction. 

II. METHODS
Data Description  
To build the model, we used head kinematics data in elite rugby collected by the Protecht iMG [5-6]. The 
mouthguard recorded 104 ms signals of linear acceleration and rotational velocity, which were used for brain 
simulations. More details on the iMG and data processing can be found in [5]. After video verification, 1701 head 
acceleration events were included in this study, with distribution of peak kinematics shown in Figure 1. The 
dataset was then augmented by utilising the head symmetry with respect to the sagittal plane. The Imperial 
College FE model of brain biomechanics was used to predict strain in the brain [2]. This model has been validated 
against experiments where controlled rotational motion was applied to cadaver heads and brain/skull relative 
displacement was measured using the sonomicrometry technique [7-8]. We extracted the 90th percentile 
maximum principal strain (MPS90) across the whole brain and in 6 ROIs used in previous studies to quantify brain 
white matter abnormalities [9].  
Machine Learning Model Development and Assessment  
Features of the head kinematics were extracted and their correlation with MPS90 was examined. Finally, two 
features from the resultant rotational velocity (|ω|) and acceleration (|α|) time-series were extracted as the 
model input: 1) the difference between the maximum and minimum values, and 2) the square root of the absolute 
of the maximum value. These features showed highest correlation with the whole-brain MPS90 (Table I).  

Figure 1 Distribution of peak rotational velocity (PRV) and peak rotational 
acceleration (PRA) in the dataset.  

TABLE I 
PEARSON’S CORRELATION COEFFICIENT R2 BETWEEN THE 
EXTRACTED FEATURES OF HEAD KINEMATICS AND MPS90 

IN THE WHOLE BRAIN

Feature |𝛚| |𝛂| 
Max and min difference 0.831 0.807 

Square root of abs of max 0.817 0.815 

XGBoost is an ensemble learning algorithm; its embedded parallel processing accelerates model learning. We 
developed XGBoost models to map kinematics data to MPS90 in the whole brain. The dataset was split into 80:20 
for model training and testing. A set of best parameters of the XGBoost model were obtained by grid search 
method with 5-fold cross validation. The objective function was mean squared error. We used the Bland-Altman 
analysis to visualise the difference between the MPS90 calculated from the FE simulations and ML predictions. 
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To evaluate the prediction accuracy, correlation coefficient R2 was calculated by comparing the true and predicted 
MPS90 in ROI.  

III. INITIAL FINDINGS

The selection of the optimal parameter set for the XGBoost model was based on maximising the negative mean 
absolute error (negative MAE) which assesses the extent of prediction variance from the true MPS90. The result 
of the grid search is shown in Figure 2. The final tuning results were n_estimator=400, learning_rate=0.15, and 
max_depth=28. Other parameters adopted default values.  

For conciseness, we present the Bland-Altman plot for the brain stem in Figure 3, where 95% confidence 
interval (CI) line of agreement (LOA) is defined. 18 of the 419 test data were out of 95% CI LOA bounds, indicating 
that 95.70% of the prediction agreed with the true MPS90. The R2 between the true MPS90 and ML prediction in 
each ROI is shown in Table II. The averaged R2 across all brain ROIs was 0.936. 

TABLE II 
CORRELATION COEFFICIENT R2 BETWEEN THE TRUE 

MPS90 AND ML PREDICTION IN EACH ROI 
ROI R2 
Whole brain 0.945 
Corpus callosum body 0.936 
Corpus callosum genu 0.926 
Corpus callosum splenium 0.931 
Corticospinal tract 0.947 
Inferior longitudinal fasciculi 0.939 
Brain stem 0.925 

Figure 2 The averaged negative MAE across 
five folds corresponding to different 
parameter sets. The highest score was -
0.00663.  

Figure 3 Bland-Altman plot with 95% CI LOA 
showing the difference in brain stem 
MPS90 between the FE and ML MSP90.  

IV. DISCUSSION

The proposed XGBoost model significantly reduces computational time for brain strain calculation, enabling 
fast prediction of MPS90 in ROIs using two kinematic features only. Its inference takes less than 0.001s on a PC 
(8GB RAM, Apple M1 CPU), whereas the FE simulation on a workstation (64GB RAM, Intel Core i7 CPU) requires 
5-6 hours per impact. The model's accuracy (0.936) is comparable to that of CNN (0.972) and DNN (0.897) [3-4],
but it should be noted that different datasets and FE models are used to build these models.

One limitation of this work is that the effects of anatomical diversity on brain strain was not considered; this 
should be addressed in future studies, similar to recent work [10]. Another limitation is that this study uses data 
from rugby. The prediction accuracy of the model should be tested and if necessary improved for other sports.  

iMGs capture and transmit kinematics signals to the receiver located by pitch-side, but the quality of signal 
transmission varies, posing challenges to receiving the signals either consistently or in real time. The proposed 
XGBoost model, in contrast to other ML models, relies on two features from the signal, which can be transmitted 
reliably even when the entire signal fails to reach the receiver successfully. Hence, the XGBoost model can be a 
more robust choice for integration with iMGs for pitch side decision-making by providing immediate brain strain 
predictions. 
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