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Exploring the Dynamic Decision-Making Process of Drivers in Safety-Critical Scenarios
through Hierarchical Drift Diffusion Models

Detong Qin, Quan Li, Zijian He, Qingfan Wang, Qing Zhou, Bingbing Nie

I. INTRODUCTION

Drivers’ decision-making processes affect collision occurrence and injury severity in safety-critical scenarios at
different levels of highly automated vehicles (HAVs). Current driver behaviour models are often data-driven [1]
or based on fundamental rules [2] and have not fully deciphered the perceptual decision-making process of
drivers. In safety-critical scenarios, the driver’s perceptual decision-making is a complex and dynamic cognitive
task. Drivers must quickly identify potential hazard signals and decide on the best course of action, such as
changing lanes or emergency braking, within a short timeframe. Understanding the drivers’ perceptual decision-
making mechanisms and avoidance kinematics is vital for guiding the development of collision-avoidance
algorithms, optimising occupant protection, and reducing human injury risk [3]. Evidence accumulation models
(EAMs), such as the Drift Diffusion Model (DDM), describe how information is processed during decision-making,
with a decision being made when accumulated information exceeds a specific threshold [4]. These models are
particularly beneficial for comprehending how humans make quick decisions under safety-critical conditions. As
a preliminary investigation, this study uses the Hierarchical Drift Diffusion Model (HDDM) to explore the role of
EAMs in explaining drivers’ perception response times (PRT) and characterising their decision-making processes.

Il. METHODS

Drivers’ perceptual decision-making processes can be understood and analysed through the DDM (Fig. 1 (b))
and computational modelling to assist in comprehending the brain’s mechanisms during the decision-making
process in safety-critical scenarios. DDM framework posits that decisions arise from a noisy evidence
accumulation process. Evidence is accumulated over time until it reaches a certain threshold, which involves a
trade-off between decision time and accuracy. DDM is characterised by four primary parameters (Fig. 1(b)): drift
rate, representing the rate of evidence accumulation; decision threshold, indicating the threshold of information
accumulation required before making a decision; non-decision time, encompassing time for perception and action
preparation; and starting point, the initial position of information accumulation that reflects prior bias.

HDDM represents an advanced application of DDM. It employs Bayesian methods for parameter estimation
that extend beyond considering parameters in a singular decision-making process. Its hierarchical structure
considers individual differences and variations across different experimental conditions (Fig. 1(c)), offering a more
profound understanding of the cognitive processes involved in decision-making. Data on driver responses in
safety-critical scenarios were collected from 24 participants through driving simulator experiments, yielding 773
valid cases (Fig. 1(a)). Further experimental details are available in [5]. We determined the parameters of the
HDDM regarding drivers’ PRT in safety-critical scenarios and initiated a preliminary exploration of the physical
significance of model parameters in explaining drivers’ decision-making.
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Fig. 1. Drivers’ active response acquisition, evidence accumulation model framework and HDDM analysis.
lll. INITIALFINDINGS
The average PRT, decision thresholds, and drift rates for each participant are shown in Fig. 2(a). A consistent
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trend is observed between PRT and decision thresholds, with minimal variability in drift rates among participants.
This suggests that drivers process information at a relatively uniform rate in safety-critical scenarios, with
variations in PRT primarily related to the decision thresholds. Drivers with higher decision thresholds necessitate
more information before coming to a decision, thereby leading to longer PRT. The average non-decision time for
drivers was found to be 0.45 s, with minimal variance (0.45 + 0.04 s). This implies that in safety-critical scenarios,
drivers’ PRT — comprising perception, decision-making, and execution — averages at least above 0.45 s.

Expanding from the base model (M4, ), our study incorporated variations in decision thresholds and drift rates
based on the time headway (THW) and activation of the lead vehicle’s brake lights (Mg jight, My~rraw ,
Mg tight;o~rHw, May~iigh ana THW)- This expansion aimed to investigate how external factors collectively impact
the decision-making process. The analysis of results revealed that M, ;i gntv~raw exhibited the lowest DIC value
(-138), indicating a superior balance between model complexity and data fit, thus performing best in explaining
the data. Further examination of the posterior distribution of model parameters in My_j;gnt;v~raw (Fig. 2(b))
demonstrated distinct drift rates and decision thresholds across different conditions, with no overlap observed.
Specifically, the decision threshold exhibited a significant reduction in response to the lead vehicle’s brake lights
being activated, while the drift rate notably increased as the THW decreased. This observation suggests that
factors such as THW, related to safety urgency, predominantly influence the rate of evidence accumulation, while
cues like the lead vehicle’s brake lights serve to modulate drivers’ decision thresholds.

(a) (b)
Fig. 2. HDDM model parameters for different participants and scenario variables.
IV. DISCUSSION

Understanding drivers’ perceptual decision-making behaviours is pivotal for predicting their responses in
safety-critical scenarios, allowing for the adjustment of protection systems to provide optimal safety for humans
and reduce the risk of injury. This study employs HDDM to explore the significance and feasibility of evidence
accumulation models in elucidating the drivers’ perceptual decision-making processes. Model parameters reveal
individual differences among drivers, primarily reflected in the varying decision thresholds. Interestingly, drivers’
non-decision time in safety-critical situations (0.45 s) offers a crucial reference for determining the minimum PRT.
Models that link drift rates to THW and thresholds to the lead vehicle’s brake lights show strong fit and
interpretability. These findings highlight how scenario variables impact drivers’ perceptual decision-making
processes: THW influence the rate of evidence accumulation, while the lead vehicle’s brake lights modulate
drivers’ decision thresholds, thereby influencing PRT. HDDM provides insights into how drivers process
information, make decisions, and execute actions, thereby enhancing driving safety and achieving optimal
protection. Nevertheless, this preliminary investigation only verifies the potential of evidence accumulation
models in understanding PRT characteristics and their underlying determinants using a driving simulation dataset
of typical safety-critical scenarios. To understand the process comprehensively, further detailed research
employing naturalistic driving data is warranted to delve into drivers’ evidence accumulation decision-making
models. This will not only enable the prediction of driver behaviour and potential injuries but will also guide the
development of collision-avoidance algorithms and the implementation of optimal protective measures.
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