
Abstract After successfully introducing projects to reduce traffic accident deaths, the European Union 
focuses on lowering the seriously injured as defined by the Abbreviated Injury Scale (AIS). We used in-depth crash 
investigation data for injury severity projection to get MAIS3+ (Maximum AIS) injury severity distribution 
information for a national data set. 

In contrast to the projection method by weighting, the approach presented here maps the distribution of 
interest, i.e., the distribution of a particular variable, from the in-depth study to the national level. The scheme 
works by transferring conditional probabilities—estimated using the in-depth survey—to the national level and 
using these conditional probabilities to supplement the distribution information from the national database. Even 
though the enhanced national data set provides only injury severity distribution information, it can be used to 
analyse the temporal stability of the crash environment at different injury severity levels. 

As an application of the method, we added MAIS2+, 3+, and 4+ injury severity distribution information, using 
the German in-depth Accident Study (GIDAS) information, to the German national crash data set and investigated 
the shift in injury severity over the crash years. Each new crash test standard shows a statistically significant injury 
severity reduction. 

Keywords Projection, data enhancement, national crash statistics, in-depth crash investigation, MAIS3+ injury 
severity level.  

I. INTRODUCTION
Policy evaluation, e.g., evaluating new advanced driver assistance systems or monitoring political objectives 

such as Vision Zero of the European Union [1], is a significant application of crash databases. However, national 
crash databases often lack detailed information for such assessments; consequently, biased in-depth crash 
studies are often used for policy evaluation. In-depth crash studies such as National Automotive Sampling System 
Crashworthiness Data System (NASS-CDS) for the US or German in-depth Accident Study (GIDAS) for Germany are 
helpful for policy evaluation only if projected to the national level, which means the information of the in-depth 
study needs to be transformed such that it is representative on the national level. 

One approach to projecting an in-depth crash study to a national level is weighting the in-depth cases. The in-
depth crash study is treated as a sub-sample of the national crash data. Therefore, each case in the national crash 
data has a probability of being included in the in-depth crash study. Under the assumption of non-zero inclusion 
probabilities, the weights can be chosen as their inverse. For instance, the weights in NASS-CDS are determined 
this way. To elaborate, NASS-CDS uses a multi-stage sampling scheme for case selection. In the first step, 
representative counties and police jurisdictions are chosen. Then, the researchers select a sub-sample for an in-
depth investigation of the crashes occurring in the selected region. Finally, the selection scheme is chosen so that 
more severe injuries are more likely to be sampled, and the focus is on tow-away crashes only [2]. 

In NASS-CDS the selection probabilities at each stage are known. Thus, the product of all selection probabilities 
results in the inclusion probabilities for each case; inversion of the inclusion probabilities determines the weights 
[3]. Note that the inclusion probability of non-tow-away crashes is zero. Thus, the weighted NASS-CDS sample 
can only represent all US tow-away crashes and not all US crashes. In the present study, we denote such an 
approach as weighting by inclusion probability. 

The in-depth study GIDAS, see Section III (In-depth Sample (GIDAS)) for further details, is a sub-sample of 
German crash data. However, GIDAS does not follow a statistical sampling scheme, and the probabilities for case 
inclusion are unknown. Instead, GIDAS has a specific sampling criterion: A crash with an injured participant [4]. 
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References [5-6] proposed to project these samples to the national level by weighting the in-depth study by 
the weights chosen such that the contingency tables for a set of covariates matches. We denote this approach as 
weighting by matching of covariates. For instance, possible covariates are crash location or crash type. Since too 
many covariates lead to an overfit, the covariates must be carefully selected. Reference [6] suggest evaluating 
the fit using a crash severity measure available in both data sets, such as the police-reported crash injury severity. 
However, since the weights are built upon covariates available in both databases, i.e., national level and in-depth, 
it is indeterminable how well this approach works for variables only available in the in-depth study. Due to the 
sample criterion, non-severe crashes are underrepresented in GIDAS, and most likely, some crash types are not 
included. Thus, some inclusion probabilities are zero, making the computation of the universal weights 
impossible—universal in the sense that a weighted in-depth study transfers representatively all variables of the 
in-depth study to the national level. In particular, universal weights require that the in-depth data set be split into 
different subgroups so that each in-depth subset is representative of the corresponding subgroup on the national 
level. 

A sample criterion such as the one used in GIDAS requires very particular subgroups. For example, for crashes 
such as 40-year-old men in full-frontal single-vehicle crashes with Δv=40 km/h, the in-depth study and the 
national database would be similar even though the in-depth study tends to more severe crashes. However, if an 
important variable such as age or Δv is dropped, a sample criterion leading to more severe crashes would mean 
that the in-depth study is not representative anymore. Due to limited crash information in the national data set, 
such detailed subgroups cannot be built using the national database. Hence, the weights cannot be calculated. 
Additionally, the sample sizes of the different subgroups would be tiny, which could make statistical reasoning 
difficult. Thus, it is indeterminable if such universal weights can be achieved by matching contingency tables of 
covariates. 

This paper goes beyond the weighting with universal weights by changing the perspective: Instead of weighting 
the in-depth study to match the distribution of some covariates at the national level, it enhances the information 
in the national database with data from the in-depth study. In contrast to the previous projection methods by 
weighting, the approach presented here maps the distribution of interest, i.e., the distribution of a particular 
variable, from the in-depth study to the national level. We denote this as mapping of conditional probabilities. 
That means the projection is not made case-by-case but on an aggregated level, which can be understood as a 
(sub)-population level. The approach works by transferring conditional probabilities—estimated using the in-
depth study—to the national level and using these conditional probabilities to enhance the national database. 
The underlying assumption is that the used conditional probabilities coincide between both data sets. Thus, if the 
assumption holds, the enhanced national database possesses the same representative properties as the original 
national database. In this case, the enhanced national database can be considered an unconditional data set, e.g., 
not restricted to tow-away crashes (NASS) or crashes with at least one injured occupant (GIDAS). Such 
unconditional national data is beneficial if the interest is on trend in the injury severity distribution over time, as 
sampling criteria like crashes with at least one injured person could lead to a non-negligible bias. Furthermore, 
working on an aggregated level, not on a case-by-case level, has the advantage that only aggregated information 
is required to do the fit. For instance, no case-level information from the national database is needed, which can 
be an advantage regarding privacy requirements. The method is illustrated in Figure 1. A more detailed 
mathematical description is given in Section II (METHODS). 

Let us elaborate on the main argument of transferring conditional probabilities. This approach assumes that 
the conditional probabilities coincide between the in-depth study and the national database so that information 
can be transferred. This assumption may not hold for both data sets in general but for the particular sub-
populations of interest. From the perspective of the weighting approach, conditional probabilities can be 
translated to weights. However, if the national database is enhanced with multiple variables, different weights 
would be used for each variable. Hence, the method presented here can be seen as a generalisation of the 
weighting approach where different weighting schemes might be used. Additionally, working with conditional 
probabilities has the advantage of interpreting conditional probabilities is easier than weights alone. Both 
mapping of conditional probabilities and weighting by matching of covariates rely on non-testable assumptions. 
However, the interpretability of conditional probabilities can help in arguing whether it is likely or not that the 
conditional probabilities of the in-depth study coincide with the national database for the particular sub-
population of interest. 
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Note that this approach is not limited to using a single in-depth study, i.e., the national database can be 
enhanced with multiple variables where the information for each of these variables might come from different 
in-depth studies.  

Fig. 1: Supplementing the marginal distributions of the national data set (blue) with the in-depth data set (red). 

Returning to our outset, the mean objective of the European Vision Zero is to reduce the number of fatalities 
and serious injuries as defined by the Maximum Abbreviated Injury Scale (MAIS3+) [7] to zero on European roads 
by 2050 [1]. However, many national crash databases do not provide AIS injury information, making close 
monitoring difficult. The mapping of conditional probabilities approach can help to fill this gap. This paper 
presents an application of mapping of conditional probabilities to German crash data. Hence, it closes the 
monitoring gap for Vision Zero in Germany and shows how new insights can be gained from the enhanced national 
data set. The DESTATIS (Deutsches Statistik-Informationssystem, engl. German statistic information system) 
national crash data is supplemented with detailed medical data from an in-depth GIDAS database. This approach 
enables the investigation of the shift in injury severity over crash years. One striking finding of such investigation 
is that the crash environment exhibits notable temporal instability even after controlling for factors like model 
vehicle year and focusing exclusively on injury severity of occupants in modern vehicles. Specifically, it is observed 
that the nature of traffic accidents is changing from year to year, becoming increasingly aggressive. This temporal 
instability underscores the dynamic and evolving nature of road safety challenges, see among others [8-9]. 

II. METHODS 
This section defines the method mapping of conditional probabilities and elaborates on its mathematical 

details. 

Data Enhancement 
Let 𝑋𝑋 and 𝑌𝑌 be discrete random variables with the outcomes 𝑥𝑥0, … , 𝑥𝑥𝑝𝑝 and 𝑦𝑦0, … , 𝑦𝑦𝑞𝑞, respectively. 

Furthermore, the in-depth study has information on 𝑋𝑋 and 𝑌𝑌, whereas the national database contains 
information on 𝑋𝑋 only. We mark by subscript 𝑁𝑁 the national level and by subscript 𝐼𝐼 the in-depth study, i.e., 𝑌𝑌𝐼𝐼  
marks a variable in the in-depth study. Note that the distribution of 𝑌𝑌𝑁𝑁 is unknown, and the objective is to enhance 
the national level with information about 𝑌𝑌𝑁𝑁. The approach is as follows. First note that we have for any outcome 
𝑦𝑦𝑖𝑖 ∈ {𝑦𝑦0, … ,𝑦𝑦𝑞𝑞} 

ℙ(𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖) = �ℙ
𝑝𝑝

𝑗𝑗=0

�𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗�ℙ�𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗�.                                             (1) 

On national level the probabilities ℙ�𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗� are known (or can be estimated at least). Then, to enhance 
the national level with ℙ(𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖) the underlying assumption is that 
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ℙ�𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗� = ℙ�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗�  for all 𝑖𝑖, 𝑗𝑗.                                       (2) 
Hence, we obtain 

ℙ(𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖) = �ℙ
𝑝𝑝

𝑗𝑗=0

�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗�ℙ�𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗�.                                                 (3) 

That is, the previously unknown distribution of 𝑌𝑌𝑁𝑁 is now given by known (or at least estimable) quantities. To 
apply this to data, the probabilities ℙ�𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗�, 𝑗𝑗 = 0, … ,𝑝𝑝 can be estimated using the national data, and the 
conditional probabilities ℙ�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗�, 𝑖𝑖 = 0, … , 𝑞𝑞, 𝑗𝑗 = 0, … , 𝑝𝑝 can be estimated using the in-depth 
data. 

Note the assumption, i.e., Equation 2, may not generally hold for the conditional probability of 𝑌𝑌 given 𝑋𝑋. The 
idea is first to build subgroups that can be considered homogeneous in both data sets, so the assumption holds. 
For instance, some crucial covariates like occupant age or traffic domain may affect the distribution of 𝑌𝑌 and the 
conditional distribution of 𝑌𝑌 given 𝑋𝑋. Hence, the approach is first to stratify the data for these covariates such 
that the assumption holds for all subgroups. To elaborate, let 𝑍𝑍 be a covariate with outcomes 𝑧𝑧0, … , 𝑧𝑧𝑟𝑟, and the 
covariate 𝑍𝑍 is observed at the national level and in the in-depth study. Then, assumption Equation 2 can be 
modified to 

ℙ�𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗 ,𝑍𝑍𝑁𝑁 = 𝑧𝑧𝑘𝑘� = ℙ�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗 ,𝑍𝑍𝐼𝐼 = 𝑧𝑧𝑘𝑘�  for all 𝑖𝑖, 𝑗𝑗, 𝑘𝑘     (4) 
and the distribution of 𝑌𝑌𝑁𝑁 is then given by 

ℙ(𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖) = ��ℙ
𝑞𝑞

𝑗𝑗=0

𝑟𝑟

𝑘𝑘=0

�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗 ,𝑍𝑍 = 𝑧𝑧𝑘𝑘�ℙ�𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗 ,𝑍𝑍 = 𝑧𝑧𝑘𝑘�.              (5) 

Stratification of conditional probabilities is only necessary in dimensions in which the distribution of the 
stratification variable differs among the data sets.1 

Since the data enhancement uses the distributional level only, only data stratified with respect to the variables 
𝑋𝑋 and 𝑍𝑍 (in the in-depth study also for 𝑌𝑌) is necessary, but nothing further. Thus, the involved probabilities can 
be estimated using aggregated data, and no case-by-case data is required, which can be a potential benefit in 
terms of privacy constraints. 

III. APPLICATION 

As an application to the methodology, an example is discussed in detail, emphasising the importance of 
covariates to build homogeneous subgroups is illustrated. 

At the beginning of the new millennium, the European Union (EU) instigated projects to reduce road traffic 
fatalities by 50 % within a decade [10]. However, even though the programme was renewed in 2010 for another 
50 % reduction in 10 years, an influential publication by [11] shifted the focus from road traffic death to the 
severely injured, i.e., MAIS3+ injured [7]. 

The national statistics do not code injury severity using the AIS-scale. Still, the injury severity documented by 
police officers is based on treatment location, duration, and survival (henceforth denoted as 𝑃𝑃-scale, see Section 
III (The P-Scale)) and does not provide enough detail to answer questions about severely injured persons, i.e., the 
MAIS3+ injured. The approach mapping of conditional probabilities is used to enhance the national crash data for 
drivers of passenger vehicles with information on injury severity, focusing on severely injured persons. Note that 
the evaluation is for drivers of motor vehicles only, as the national crash data does not provide seating position 
information for other vehicle occupants. 

As an application of the method, timelines of crashes are investigated: The influence of the vehicle model year 
(vmy), the occupant age, and the crash environment of the crash year on injury severity. 

 
1 Let 𝑈𝑈 be some additional covariate with outcomes 𝑢𝑢𝑙𝑙. If ℙ�𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗,𝑍𝑍𝑁𝑁 = 𝑧𝑧𝑘𝑘 ,𝑈𝑈𝑁𝑁 = 𝑢𝑢𝑙𝑙� =

ℙ�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗,𝑍𝑍𝐼𝐼 = 𝑧𝑧𝑘𝑘 ,𝑈𝑈𝐼𝐼 = 𝑢𝑢𝑙𝑙� for all 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, and ℙ�𝑈𝑈𝑁𝑁 = 𝑈𝑈𝑙𝑙|𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗,𝑍𝑍𝑁𝑁 = 𝑧𝑧𝑘𝑘� = ℙ�𝑈𝑈𝐼𝐼 = 𝑢𝑢𝑙𝑙|𝑋𝑋𝐼𝐼 =
𝑥𝑥𝑗𝑗,𝑍𝑍𝐼𝐼 = 𝑧𝑧𝑘𝑘� for all 𝑗𝑗,𝑘𝑘, 𝑙𝑙, then ℙ�𝑌𝑌𝑁𝑁 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝑁𝑁 = 𝑥𝑥𝑗𝑗,𝑍𝑍𝑁𝑁 = 𝑧𝑧𝑘𝑘� = ℙ�𝑌𝑌𝐼𝐼 = 𝑦𝑦𝑖𝑖|𝑋𝑋𝐼𝐼 = 𝑥𝑥𝑗𝑗 ,𝑍𝑍𝐼𝐼 = 𝑧𝑧𝑘𝑘�  for all 𝑖𝑖, 𝑗𝑗, 𝑘𝑘. 
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Data Sets 
National Data Set (DESTATIS) 

The DESTATIS data set is the pool of all police-reported traffic crashes in all 16 German states. However, for 
data protection reasons, only data subsets or partial, i.e., resampled data sets with aggregated and 
pseudonymised variables, are available for independent research. To circumvent this limitation, the data subset 
used in this investigation consisted of multidimensional marginal distributions of user-defined variables (see 
Section III (Homogeneous Subgroups/Cut-off Points)) spanning the crash years 2010 to 2020 and focusing on the 
drivers of passenger cars. 

In total, this data set contains information on approximately 4 million drivers. 
 

In-depth Sample (GIDAS) 
The GIDAS data set is a random sample of crashes with an injured party in two of Germany’s metropolitan 

areas: Greater Dresden and Greater Hanover. Note that the metropolitan areas include the cities and the 
surrounding rural regions. The split between city areas and the rural regions was chosen to represent the split in 
Germany. The implemented on-spot, 50 % sampling is done in 6 h on/off shifts, alternating weekly, by a single 
team in each location. After completing a case, the most recent crash is addressed (first-in, last-out) until all 
crashes are sampled or the end of the shift is reached. Overall, this leads to a biased 30 % sample of crashes 
compared to DESTATIS [4][12]. 

The GIDAS sample is a non-identifiable sub-sample of the DESTATIS data set. The GIDAS data set from July 2021 
comprises crashes between 2000-2020. For this analysis, the GIDAS sampling period is oriented on the 
DESTATIS data set; thus, only crashes between 2010-2020 are used. This subset contains information on about 
20,000 crashes, of which about 15,500 are passenger vehicle crashes with roughly 30,000 occupants. 

GIDAS variables beyond variables encoded in DESTATIS were used only for the injury severity evaluation. Note 
that this data set also contains information on passengers, specifically front-row passengers. 

Injury Coding in the Data Sets 
The 𝑷𝑷-Scale (injury severity documented by police officers) 

In the DESTATIS data set, injury severity is categorised—by the police—into four levels: uninjured, slightly 
injured, severely injured, and fatal; these four levels of injury are denoted henceforth as {P0,P1,P2,P3}, 
respectively. 

Uninjured is defined as no self-reported injuries and no need for medical assistance at the accident scene. 
Anybody who is either self-reporting an injury or is treated for a crash-induced medical condition is coded as at 
least slightly injured. To be coded as severely injured, the patient must be hospitalised for crash-related injuries. 
By international agreement, the fatal category is adjusted one month after the incident to include all crash-related 
fatalities within 30 days of the accident [13][7, Annex IV]. Thus, the P-scale is based only on treatment location, 
duration, and survival and not on injury severity evaluated by police officers. Consequently, this fact makes the 
P-scale more robust to misclassification than other policy-reported injury severity scales, such as the US KABCO 
scale and its related problems [14]. 

The GIDAS data set also includes the four-level police-reported injury severity. 
𝑺𝑺-Scale (injury severity using AIS-coding) 

GIDAS also includes an AIS [15-16] coding of every individual injury [4]. In a previous project, all GIDAS injury 
information was reevaluated and recoded to the current AIS 2015 [17-18]. The AIS assesses the severity of 
individual injuries; these injury severities have to be aggregated to the patient level. For this injury severity 
aggregation, the MAIS of a patient and injury severity score (ISS) [19-20] are frequently employed. Therefore, an 
injury severity categorization using the well-established cut-off points of the AIS-based ISS is chosen for the 
evaluation and is denoted 𝑆𝑆-scale. At the cut-off points, the ISS gives a reasonable ordering; thus, this injury 
grouping can also be characterised as a scaling. It contains four levels of injury severity with the following groups: 

S0 for uninjured (ISS ≤ 3), 
S1 for light and moderate injuries (ISS ∈ [4,8]), 
S2 for severe and life-threatening injuries with a high probability of survival (ISS ∈ [9,15]) 
S3 for life-threatening injuries and fatalities (ISS ≥ 16) 

Groups S2 and S3 are motivated by the established cut-offs of ISS ≥ 9 and ISS ≥ 16 [21-22] for severe and 
multiple injuries, respectively. Furthermore, the reliance on self-reporting in data sets such as GIDAS and 
DESTATIS for slight injuries, i.e., AIS1 injuries, results in an under-reporting of these injuries [23] and hinders 
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differentiation between the MAIS0 and MAIS1 injured [24][4]. Therefore, both injury severity levels were used to 
represent S0. 

To harmonise crash research, the European Commission issued a policy statement on road safety in which 
serious injuries are defined as those with a MAIS3 or higher, which approximately corresponds to ISS ≥ 9.  Note 
that 𝑆𝑆 ∈ {S2,S3} refers to the European Commission’s definition of serious injuries, i.e., MAIS3+. Furthermore, 
MAIS2+ can be expressed as 𝑆𝑆 ∈ {S1,S2,S3}, and MAIS4+ is equivalent to 𝑆𝑆 ∈ {S3}. 

Homogeneous Subgroups/Cut-off Points 
For mapping of conditional probabilities to work, it is necessary to classify the data into subgroups 

homogeneous with respect to the conditional probabilities across data sets. Note that the subgroups have to be 
defined identically for both data sets, further limiting possible cut-off points. Therefore, the pseudo-continuous 
data used in the analysis were categorised by cut-off points subject to objectively logical constraints, privacy 
constraints, and sub-sample size requirements. 

Occupant Age 
The occupant age is categorised into four groups: 18-44, 45-46, 65-74, and 75+ years of age (yoa). Since the 

focus is on drivers and the legal driving age in Germany is 18 or older, any group of occupants aged 17 or younger 
is not considered. Furthermore, the adult population (18-64 yoa)[25] is subcategorised into a young adult group 
(18-44 yoa)[26] and an older adult group (45-64 yoa). 

The retiree group—starting at 65 yoa—is split at 75 yoa to consider the increase of fragility and frailty with age 
[27]. A stratification of the retiree group with finer granularity, i.e., into 5 yoa blocks, as suggested by [28], 
resulted in sample size problems. 

Vehicle Model Year 
Vehicle model year (vmy) is widely used as a proxy for crashworthiness [29]. Due to the unavailability of vmy in 

the data sets, the year of the first passenger car registration is used as a substitute. Furthermore, the year of first 
registration of the passenger car is only available for vehicles registered in Germany, about 95% of the sampled 
cars. 

The current evaluation considers six categories: before 1980, 1980-1997, 1998-2001, 2002-2005, 2006-2011, 
and 2012-2020. Since the data set DESTATIS covers the crash years 2010-2020, the group before 1980 contains 
vintage vehicles only and is not investigated in this analysis. Table AI gives the shares of each vehicle group for 
each period. 

The cut-off points are motivated by the following arguments [30]: 
1997/1998 Introduction of European New Car Assessment Programme (Euro NCAP) offset deformable 
Barrier (ODB) Test at 64 km/h rating [31]. 
2001/2002 compliance of new vehicle designs to Euro NCAP ODB. 
2005/2006 compliance of all new vehicles to Euro NCAP ODB. 
2011/2012 introduction of the Euro NCAP rigid pole side crash test [32].  

 

Traffic Domains 
Within the operating range of the restraint systems, motor vehicles provide very good protection to belted 

occupants. Furthermore, the injuries sustained despite this protection are overwhelmingly a result of blunt force 
trauma. The injury mechanism changes once the crash energy is above the design limit, i.e., the crumple zone 
and the forward excursion are used up. 

Because of the lack of crash reconstruction data in the DESTATIS database, the speed limit at the crash site is 
used as a proxy for crash severity [33]. We found the speed limit at which the injury mechanism changes in a 
statistically significant way to be between 80 and 90 km/h, i.e., occurrence of sharp and penetrating traumata in 
a significant number of cases. Therefore, traffic domains are stratified by the speed limit (SL): SL ≤ 80 km/h and 
SL ≥ 90 km/h or Autobahn. 

The change of injury mechanism has to be considered when assessing the percentage of drivers hospitalised 
for crash related injuries while MAIS3+ injured and surviving (see Section III (Mapping)). 

Crash Year 
The crash sample at hand encompasses crash years 2010 to 2020. The primary focus of our analysis is on the 

most recent vehicles, i.e., those with a market introduction in 2012 or later. While the first two crash years contain 
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crashes before the market introduction of 2012 model year vehicles, the latter years have an increasing number 
of these newer cars (see the last column of Table AI). 

The crash year was controlled to take care of changes in the crash environment, i.e., a change in injury severity 
of a given accident situation over time, such as progressively more restrictive speed limits and the installation of 
further crash barriers, but also weight increases in the crash opponents. Though these effects are minor year-to-
year, they could be significant over the decade under investigation. 

A three-year moving average was chosen to smooth the data, a trade-off between sample size and selection 
bias. When re-combining the crashes for information on the 2012–2020 crash years, the distributions are 
averaged across the three-year moving averages so that each crash year contributes equally. 

Mapping of DESTATIS 𝑷𝑷-Coding to the 𝑺𝑺-Scale 
The Link between 𝑷𝑷- and 𝑺𝑺-Scale 

The DESTATIS data set does not contain any injury severity coding in 𝑆𝑆-scale or MAIS information. Hence, 
mapping of conditional probabilities supplements DESTATIS with injury severity coding in the 𝑆𝑆-scale. The variable 
𝑃𝑃 refers to the injury distribution in the 𝑃𝑃-scale, and the variable 𝑆𝑆 refers to the 𝑆𝑆-scale injury distribution. Both 
variables have four possible outcomes. We have denoted the outcomes P0,P1,P2,P3 and 0,1,2,3, respectively. 
Additionally, let ℙ(𝑃𝑃 = P𝑗𝑗) = 𝑥𝑥𝑗𝑗 and ℙ(𝑆𝑆 = S𝑗𝑗) = 𝑦𝑦𝑗𝑗  for 𝑗𝑗 = 0, … ,3. In the DESTATIS data set, the probabilities 
𝑥𝑥0,𝑥𝑥1, 𝑥𝑥2,and 𝑥𝑥3 were given, and we used the mapping of conditional probabilities approach to determine the 
probabilities 𝑦𝑦0,𝑦𝑦1,𝑦𝑦2,and 𝑦𝑦3 for the DESTATIS data set. 

We follow [24] and do not distinguish between P0 and P1. The reason for this is twofold. First, the focus of this 
application is on severely injured persons, which are encoded primarily by P2 or P3. Second, [24] argue that the 
relying on self-reporting for slight injuries hinders a differentiation between the MAIS0 and MAIS1 injured. 
Consequently, the coding of P0 and P1 is not considered trustworthy. Hence, the variable 𝑃𝑃 is reduced to 3 
outcomes, and we have denoted its outcomes as P0 + P1,P2,and P3. Thus, for the variables 𝑆𝑆 and 𝑃𝑃, we got  
4 × 3 = 12 conditional probabilities: ℙ(𝑆𝑆 = S𝑖𝑖|𝑃𝑃 = P0 + P1),ℙ(𝑆𝑆 = S𝑖𝑖|𝑃𝑃 = P2),ℙ(𝑆𝑆 = S𝑖𝑖|𝑃𝑃 = P3), 𝑖𝑖 =
0,1,2,3. These conditional probabilities can be estimated using the GIDAS data set. Before doing so, note the 
constraint ∑ ℙ3

𝑖𝑖=0 (𝑆𝑆 = S𝑖𝑖|𝑃𝑃 = 𝜔𝜔) = 1,𝜔𝜔 ∈ {P0 + P1,P2,P3} reduced the unconstrained parameters to 9 =
(4 − 1) × 3. Additionally, some conditional probabilities did not need to be computed since they can be set to 
zero. To elaborate, we set ℙ(𝑆𝑆 ≥ S1|𝑃𝑃 = P0 + P1) = 0 since almost all AIS2 injuries would warrant a hospital 
stay, at least in Germany. Moreover, since the probability of dying from an AIS2 injury is negligible, i.e., a coding 
error in either 𝑆𝑆 or 𝑃𝑃 is much more likely than the patient dying from one or two AIS2 injuries, we set 
ℙ(𝑆𝑆 ≤ S1|𝑃𝑃 = P3) = 0. 

Overall, we obtained the following 
ℙ(𝑆𝑆 = S0|𝑃𝑃 = P0 + P1) = 1,  ℙ(𝑆𝑆 = S0|𝑃𝑃 = P2) = 𝛼𝛼0,  ℙ(𝑆𝑆 = S0|𝑃𝑃 = P3) = 0
ℙ(𝑆𝑆 = S1|𝑃𝑃 = P0 + P1) = 0,  ℙ(𝑆𝑆 = S1|𝑃𝑃 = P2) = 𝛼𝛼1,  ℙ(𝑆𝑆 = S1|𝑃𝑃 = P3) = 0,
ℙ(𝑆𝑆 = S2|𝑃𝑃 = P0 + P1) = 0,  ℙ(𝑆𝑆 = S2|𝑃𝑃 = P2) = 𝛼𝛼2,  ℙ(𝑆𝑆 = S2|𝑃𝑃 = P3) = 1 − 𝛾𝛾,
ℙ(𝑆𝑆 = S3|𝑃𝑃 = P0 + P1) = 0,  ℙ(𝑆𝑆 = S3|𝑃𝑃 = P2) = 𝛼𝛼3,  ℙ(𝑆𝑆 = S3|𝑃𝑃 = P3) = 𝛾𝛾,

 

where 𝛼𝛼3 = 1 − 𝛼𝛼2 − 𝛼𝛼1 − 𝛼𝛼0,𝛼𝛼0,𝛼𝛼1,𝛼𝛼2, and 𝛾𝛾 ∈ [0,1].  
The mapping of conditional probabilities approach transfers these conditional probabilities from GIDAS to 

DESTATIS. In the context of this application, the population level refers to drivers of passenger vehicles. Recall 
that the underlying assumption is that these conditional probabilities coincide. Most likely, this assumption does 
not hold for the population level but should hold for the subgroups; see the discussion of Equation 2 for details. 

The 𝛼𝛼 parameters give the shares of S0 to S3 for survivors of a traffic crash who were hospitalised for crash 
related causes. The parameter 𝛾𝛾 links fatality to injury severity, i.e., 𝛾𝛾 provides the share of the S2 and S3 injured 
for the non-survivors of a traffic crash. As a pure injury metric, technical crash severity should not affect 𝛾𝛾. Since 
fragility affects the survival probability, 𝛾𝛾 is affected by age. The injury mechanism and the medical treatment 
policy of traffic crashes affect the 𝛼𝛼 parameters. Since both DESTATIS and GIDAS are German data sets, the 
medical treatment policy for traffic crashes can be seen as similar. If there is no intrusion into the occupant 
compartment, the injury mechanism of traffic crashes is mainly blunt force trauma. Frailty, fragility, and medical 
treatment policy differences in occupant age make 𝛼𝛼 age-dependent. Thus, to take into account these 
dependencies and differences in the age distribution between DESTATIS and GIDAS, the parameters 𝛼𝛼 and 𝛾𝛾 are 
stratified by age. 

Additionally, the 𝛼𝛼 parameters are stratified into two groups by the speed limit (SL) at the crash location. These 
two groups can be seen as a proxy for the probability of significant intrusion into the vehicle’s passenger 
compartment. The vehicle model year affects the stiffness and restraint system, affecting the likelihood of 
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intrusion and the injury mechanism. As seen in Table AI, the vehicle model year in traffic crashes changes relatively 
rapidly. If the 𝛼𝛼 and 𝛾𝛾 parameters were not stratified by vehicle model year, this temporal instability could be 
transferred to these parameters, see [9] for a discussion about the issues of temporal unstable parameters. 
Considering the stratifications mentioned above, the parameters 𝛼𝛼 and 𝛾𝛾 are temporally stable from 2010 to 
2020 since the crash year is statistically insignificant, see Appendix (Temporal stability of the α parameter). 

Below, we list such subgroups for each parameter. 
𝛼𝛼𝑖𝑖: age of occupant [yoa] ∈ {18 − 44, 45 − 64, 65− 74, 75+} yoa, 
      speed limit (SL) at crash location [km/h]: SL ∈ {5 − 80, 90+} km/h, 
      vehicle model year (vmy) ∈ {1980− 1997, 1998− 2001, 2002 − 2005, 2006− 2011, 2012− 2020}. 
 𝛾𝛾: age of occupant [yoa] ∈ {18− 44, 45 − 64, 65 − 74, 75+} yoa. 

Note that, as stated in Section II, stratification of the conditional probabilities is necessary only in dimensions in 
which the distribution of the stratification variable differs among the data sets. 

Hence, for each subgroup, given the parameters 𝛼𝛼𝑖𝑖, 𝑖𝑖 ∈ {0,1,2} and 𝛾𝛾 the 𝑃𝑃-scale can be mapped to the 𝑆𝑆-scale. 
This defines the following mapping (on-subgroup level)  

𝑆̃𝑆(𝑥𝑥): {P0: 𝑥𝑥0,P1:𝑥𝑥1,P2: 𝑥𝑥2,P3: 𝑥𝑥3} → {S0:𝑦𝑦0,S1:𝑦𝑦1,S2:𝑦𝑦2,S3:𝑦𝑦3}, 

𝑆̃𝑆(𝑥𝑥) = �

S0:𝑦𝑦0 = 𝑥𝑥0 + 𝑥𝑥1 + 𝛼𝛼0𝑥𝑥2,
S1:𝑦𝑦1 = 𝛼𝛼1𝑥𝑥2,
S2:𝑦𝑦2 = 𝛼𝛼2𝑥𝑥2 + (1 − 𝛾𝛾)𝑥𝑥3,
S3:𝑦𝑦3 = (1 − 𝛼𝛼0 − 𝛼𝛼1 − 𝛼𝛼2)𝑥𝑥2 + 𝛾𝛾𝑥𝑥3 = 𝛼𝛼3𝑥𝑥2 + 𝛾𝛾𝑥𝑥3.

                                     (6) 

Estimation of the 𝜶𝜶𝒊𝒊, and 𝜸𝜸 Parameters 
The parameters 𝛼𝛼𝑖𝑖, 𝑖𝑖 ∈ {1,2,3}, and 𝛾𝛾 need to be estimated for each subgroup using the in-depth data set 

GIDAS. For each 𝛼𝛼𝑖𝑖 parameter, there are 4 × 2 × 5 = 40 subgroups ([age of occupant] + [speed limit] + [vehicle 
model year]). A logistic regression is used to address the resulting sample size problems. To elaborate, let 𝟙𝟙 be 
the indicator function. The following logistic model is used 

α𝑖𝑖 =
1

1 + exp �−�β0 + β1 yoa + β2 yoa2 + β3𝟏𝟏(SL ∈ {90+}) +∑ β𝑖𝑖+45
𝑖𝑖=1 𝟏𝟏�vmy ∈ vmyi���

. 

That means the occupant’s age is used numerically (as a polynomial of order 2 to take the drastically increasing 
fragility and frailty of older people into account) [27]. In contrast, the speed limit at the crash location and vehicle 
model year are used categorically in a one-hot encoding. Thus, the number of parameters for each 𝛼𝛼𝑖𝑖 is reduced 
to 9. 

The parameter 𝛾𝛾 is estimated model-free. Since GIDAS contains information on the driver and all passengers, 
all parameters are estimated in GIDAS using the information on all front-row occupants. Hence, it is assumed that 
the injury mechanism is similar for drivers and other front-row occupants. The 𝛾𝛾 parameters are conditional 
probabilities and can be estimated by relative frequencies in the GIDAS data set. Relative frequencies are also 
consistent estimators in the independent and identically distributed (i.i.d.) setting [34]. Furthermore, bootstrap-
based statistical inference for these parameters and the logistic regression can be obtained [35-36].  

The mapping (Equation 6) applied to the DESTATIS data set has as inputs the injury distribution in levels 
{P0,P1,P2,P3}, which are determined using the DESTATIS data set. We treat the data set DESTATIS as a random 
i.i.d. sample for each crash year. Thus, the relative frequencies of {P0,P1,P2,P3} are considered estimates of the 
unknown injury severity risk. Therefore, the obtained relative frequencies in the 𝑆𝑆-scale are affected by the 
statistical uncertainty of both data sets. The statistical inference is obtained by a joint bootstrap-based inference 
of both data sets using an i.i.d. resampling scheme to consider this uncertainty in our statistical analysis. The 
obtained 95 %-confidence intervals are based on 𝐵𝐵 = 10 000 bootstrap repetitions. 

Thus, the evaluation is based on the following assumptions: 
1. GIDAS is a subsample of DESTATIS, and both data sets coincide in encoding practice for variables 

present in both data sets, especially P-scale coding, vehicle model year, occupant age, and the speed 
limit at the crash location. 

2. The conditional probabilities of the S-scale given P-scale coincide in both data sets for the clusters 
defined by vehicle model year, occupant age, and the speed limit at the crash location. 

3. The clusters themself are defined homogeneously, i.e., the frequency distributions in both data sets 
coincide, or the conditional probabilities of the öS-scale given P-scale are homogenous within each 
cluster.  

4. A logistic model describes the conditional probability of the S-scale given P2 across the defined clusters.  
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IV. RESULTS 

The estimated 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 0,1,2,3, and 𝛾𝛾-parameters—stratified by age group and vehicle model year—calculated 
from the GIDAS data set are given in  Table AIII in the Appendix. 

Timeline Trends on the 𝑺𝑺-Scale 
The DESTATIS data subset contained crashes from the years 2010-2020. Though for some results, the data set 

has been cropped to 2012-2020 as the primary focus was on the current traffic situation of modern vehicles, i.e., 
those with a vehicle model year 2012-2020. 

Crash Years 
The 𝑆𝑆-scale injury severity distribution for each group of the three-year moving average and the aggregated 

injury severity information for crash years 2012-2020 are given in Table AII. This information is visualised in Figure 
A6 in Appendix (Injury Severity by crash-year and age group). All 𝑆𝑆0 → 𝑆𝑆1 and 𝑆𝑆1 → 𝑆𝑆2 transitions between the 
crash years are statistically significant. 

The tabulation of the 𝑆𝑆-scale trends for the crash year groups stratified by age groups is given in Table AIV and 
Figure A7 in Appendix (Injury Severity by crash-year and age group). 

Age Groups 
The shift in injury severity with an increase in occupant age—while focusing on crash years 2012-2020 

(weighted) and vehicle model years 2012-2020—is visualised in Figure A3. 
At the 𝑆𝑆3 and 𝑆𝑆2 levels, the relative injury severity frequencies increase with age, while at the 𝑆𝑆1 level, the 

18–44 yoa and 45–64 yoa groups are nearly indifferent, with a marked increase for the 65+ groups. 

Vehicle Model Year 
The reduction in the relative frequency of injury severity with newer vehicles is shown in Figure A4. The shift 

in injury severity is depicted for vehicle model year groups for the crash years 2012-2020. The shift is more 
substantial for lower 𝑆𝑆-scores than for higher 𝑆𝑆-scores, and all 𝑆𝑆1 → 𝑆𝑆0 shifts are statistically significant on the 
95%-level. 

Age Group and Vehicle Model Year 
Age group stratified relative injury frequencies in crashed vehicles from the pre-NCAP era (1980–1997 vmy) 

are compared to the current fleet (2012-2020 vmy) in Figure A5. 
Compared to the pre-NCAP vehicles, the injury severity situation in modern cars improved in all age groups. 

There are even some shifts from 𝑆𝑆3 → 𝑆𝑆1 in the two younger age groups. Furthermore, there are some significant 
injury severity shifts in the older age groups, such as the 50 % 𝑆𝑆3 reduction in the 75+ yoa group. Thus, again, the 
shift is more substantial for lower 𝑆𝑆-scores than higher ones. 

The more detailed plots with all the intermediate vehicle model year groups and stratification by age groups 
can be found in Figure A8  in in Appendix (Injury Severity by crash-year and age group). For vehicle model year 
groups [98,01],  [02,05], and [06,11], there are insignificant changes for all age groups in both directions 
between 𝑆𝑆1 and 𝑆𝑆2 and 𝑆𝑆2 and 𝑆𝑆3. The injury severity reduction is relatively more substantial in the younger age 
groups on all injury severity levels. In the two older age groups, there is only a significant change in 𝑆𝑆3 → 𝑆𝑆2 for 
vehicle groups [80,97] → [98,01]. 

V. DISCUSSION 

MAIS3+ Mapping to the National Level 
Despite the police not measuring MAIS3+ in their data, distributions of their P-scale of crash severity can be 

used to compute distribution information on MAIS3+ (S2) injury severity. The method mapping of conditional 
probabilities used the GIDAS data set as the source for this information, as all those accidents are coded using P- 
and S-scales simultaneously. 

Application to Timelines  
The obvious application of new injury severity assessment in crash data is timelines: injury severity over crash 

year, vehicle model year, or occupant age. 
Modern vehicles are safer than older ones; this result is visualised in Figure A4. Thus, with the increase of more 
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modern vehicles on the road (see Table AI), the relative frequency of MAIS3+ injuries is expected to decrease. 
Furthermore, not only are S2 and S2+ decreasing with vehicle model year, but so are S1, S1+, and S3. 

When comparing the real-world crash performance of pre-NCAP vehicles to post-NCAP vehicles, some 
significant injury severity shifts become apparent (Figure A5). For the most severe injury levels (S2 and S3), more 
than half of the injuries are shifted down by one severity level, i.e., S3→S2 and S2→S1. This shift also holds for 
the S1 level, except for the oldest demographic. Furthermore, there are small but statistically significant injury 
severity shifts from S3→S1 in the two younger age groups. The proportion of the change in injury severity is most 
prominent for the youngest demographic and decreases significantly with occupant age. 

A more detailed look at the safety improvements stratified by age group is shown in Figure A8. Major shifts 
from S3→S2 are present only for vmy [80,97]→[97,01]. Afterwards, only minor (most even statistically 
insignificant) changes are visible. Major shifts from S2→S1 are seen in all age groups for vmy [80,97]→[97,01] and 
[06,11]→[12,20]. Again, the technological advancements benefitted the younger demographic more than the 
older demographic; this is especially obvious at the S1+ level but holds for all injury severity levels. 

Thus, the most potential for injury severity reduction can be found in the oldest demographic. However, care 
must be taken not to reduce the injury severity for the old age groups at the expense of the younger age groups 
[37]. 

Vehicle Model Years 2012-2020, Only 
The timelines show that the latest vehicle models provide the best occupant protection, independent of the 

occupant’s age (see Figure A4 and Figure A8). Therefore, this group (2012-2020 vmy) was chosen for further 
investigation. 

The injury severity level sustained by a vehicle occupant is age-dependent: The older the occupants, the more 
severe the injury severity level; the increase is most pronounced for the two most senior age groups, see Figure 
A3. This age-dependency can be directly attributed to increased fragility and frailty with age [27]. Likewise, this 
age-dependency of the injury severity level also holds when focusing on the vehicle model years 2012-2020 only 
(see Figure A5). 

Within the crash years 2012-2020, occupants in vehicles with a vehicle model years 2012-2020 fare worse the 
more current the crash year, i.e., the cash environment is becoming more and more aggressive for the modern 
cars. This deterioration in crash performance holds for the injury severity levels 𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆3 but also for P2 
and P3, whose relative frequencies are increasing (see Table AII and Figure A6). This trend also holds when this 
population is stratified by age group (see Table AV). 

As crash opponents, the increased number of in newer vehicles (see Table AI) seems to increase injury severity. 
Even so, modern vehicles have a good crash performance as long as they crash against older vehicles (see Table 
AII and Figure A6). Occupants in newer vehicles do not seem to profit as much from increased safety when 
crashing into more recent vehicles. 

To investigate the reason for this more aggressive crash environment is out of scope of this paper but clearly 
an avenue for further research. One of the reasons could be the ever-increasing vehicle mass [38-39] and the 
consecutive ever-stiffer front ends due to the crash-test focus on self-protection, i.e., test speeds independent of 
vehicle mass [30]. Another reason could be an increase in aggressive driving behaviour [40]. 

Limitations 
DESTATIS Sampling Limits 

The DESTATIS database consists of police-recorded crashes only. Thus, there are some property damage only 
crashes missing. In addition, minor injuries, e.g., hematoma or superficial lacerations, will not be reported for 
these cases, as there is an under-reporting at the lower end of the injury severity spectrum. 

All the variables in the DESTATIS database are recorded by the police officers. However, some information of 
little interest to the police investigation, e.g., seat belt status and seating position within the vehicle other than 
the driver, have quality issues or are not documented at all, e.g., height and weight of the occupant. Furthermore, 
some pieces of information on the crash are the result of the crash reconstruction, e.g., the crash sequence, which 
is neither done for every case nor are the results available at the time the police officer has to file the crash 
information with the statistics office (30 days post-crash). Therefore, all these variables with quality issues cannot 
be used in a re-coding process like the one described in this paper. 

The current analysis used pre-computed, multi-dimensional marginal distributions computed with access to 
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the 100 % DESTATIS sample. Increases in dimensionality are limited by data protection requirements, i.e., the 
ability to re-identify individual crashes. 
GIDAS Sample Size Limits  

The conditional probabilities, i.e., the 𝛼𝛼𝑖𝑖- and 𝛾𝛾-parameters, are solely based on the GIDAS data set. Note that 
mapping these conditional probabilities to the DESTATIS data set rests on assumptions. An increase in the 
GIDAS sample size would significantly reduce the confidence intervals of the translation parameters (see Table 
AIII). Additionally, this would allow us to estimate the parameters model-free. 

VI. CONCLUSION 
Instead of projecting a small, in-depth sample to a larger level, a novel method was presented to map the 

marginal distributions of a large data set to a finer granularity coding using an in-depth data source to estimate 
required conditional distributions. Using marginal distributions instead of the entire data set addresses data 
protection concerns. 

As an application of the method, the German national motor vehicle crash database (DESTATIS) was enhanced 
by distribution information on the MAIS2+, MAIS3+, and MAIS4+ injury severity levels from GIDAS. 
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VIII. APPENDIX 

Tables 

Crash year year of first vehicle registration  
 NA –79] [80,97] [98,01] [02,05] [06,11] [12,20] n 

2010 0.055 0.001 0.213 0.218 0.220 0.294 0.000 354919 

2011 0.057 0.001 0.181 0.206 0.212 0.344 0.000 370632 

2012 0.056 0.001 0.150 0.193 0.205 0.362 0.034 367055 
2013 0.058 0.001 0.119 0.175 0.198 0.351 0.099 359808 

2014 0.096 0.001 0.092 0.152 0.181 0.325 0.153 371095 

2015 0.057 0.001 0.077 0.142 0.179 0.326 0.218 378156 

2016 0.058 0.001 0.063 0.125 0.168 0.313 0.273 381354 
2017 0.057 0.001 0.050 0.108 0.154 0.300 0.330 372144 

2018 0.055 0.001 0.039 0.091 0.140 0.285 0.390 369050 

2019 0.055 0.001 0.031 0.075 0.126 0.271 0.441 357327 
2020 0.073 0.001 0.026 0.063 0.116 0.252 0.470 286079 

n 243453 2550 379506 563378 688856 1239831 850045 3967619 
Table AI 
Shares of vehicle to market introduction groups for several time periods. (NA: not available). 

 crash year group 

 2012-2014 2013-2015 2014-2016 2015-2017 
S0 97.43(97.20,97.66) 97.36(97.12,97.59) 97.24(97.00,97.48) 97.11(96.85,97.36) 

S1 1.66(1.43,1.89) 1.70(1.47,1.94) 1.78(1.54,2.02) 1.87(1.62,2.13) 

S2 0.49(0.35,0.64) 0.50(0.36,0.66) 0.53(0.37,0.69) 0.55(0.39,0.73) 

S3 0.42(0.32,0.54) 0.43(0.33,0.55) 0.45(0.34,0.58) 0.47(0.35,0.60) 
S1+ 2.57(2.34,2.80) 2.64(2.41,2.88) 2.76(2.52,3.00) 2.89(2.64,3.15) 

S2+ 0.91(0.74,1.09) 0.94(0.76,1.12) 0.98(0.80,1.17) 1.02(0.83,1.22) 

P2 3.99(3.91,4.08) 4.10(4.04,4.17) 4.28(4.22,4.33) 4.50(4.45,4.55) 

P3 0.18(0.16,0.20) 0.18(0.17,0.20) 0.19(0.18,0.20) 0.19(0.18,0.20) 
 crash year group 

 2016-2018 2017-2019 2018-2020 2012-2020 (weighted) 

S0 97.00(96.74,97.27) 96.90(96.63,97.17) 96.85(96.58,97.13) 97.13(96.88,97.38) 
S1 1.94(1.68,2.21) 2.01(1.74,2.29) 2.04(1.76,2.32) 1.86(1.61,2.11) 

S2 0.57(0.41,0.75) 0.59(0.42,0.78) 0.60(0.43,0.79) 0.55(0.39,0.72) 

S3 0.48(0.36,0.61) 0.49(0.37,0.63) 0.51(0.38,0.65) 0.47(0.35,0.59) 

S1+ 3.00(2.73,3.26) 3.10(2.83,3.37) 3.15(2.87,3.42) 2.87(2.62,3.12) 
S2+ 1.05(0.86,1.26) 1.09(0.88,1.31) 1.11(0.90,1.33) 1.01(0.83,1.22) 

P2 4.68(4.63,4.73) 4.84(4.80,4.89) 4.91(4.86,4.95) 4.47(4.44,4.51) 

P3 0.19(0.18,0.20) 0.20(0.19,0.21) 0.21(0.20,0.22) 0.19(0.18,0.20) 
Table AII 
S-distribution for different crash year groups, vehicle model year group 2012-2020.  
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occupant age: [18,44] [45,64] [65,74] [75 +] [18,75 +] 

vmy  
∈ 
[80,97] 

SL 
≤ 

 80 km/h 

𝛼𝛼0 0.34(0.30,0.38) 0.29(0.25,0.34) 0.30(0.25,0.35) 0.31(0.25,0.38) 0.32(0.28,0.35) 

𝛼𝛼1 0.44(0.40,0.48) 0.46(0.41,0.50) 0.44(0.39,0.49) 0.41(0.35,0.48) 0.44(0.40,0.48) 

𝛼𝛼2 0.15(0.12,0.18) 0.17(0.14,0.21) 0.18(0.15,0.22) 0.19(0.14,0.24) 0.17(0.14,0.19) 

𝛼𝛼3 0.07(0.05,0.09) 0.08(0.05,0.10) 0.08(0.06,0.11) 0.08(0.05,0.12) 0.07(0.05,0.09) 

SL 
≥ 

 90 km/h 

𝛼𝛼0 0.33(0.28,0.37) 0.27(0.22,0.33) 0.27(0.22,0.33) 0.29(0.21,0.36) 0.31(0.26,0.35) 

𝛼𝛼1 0.40(0.36,0.44) 0.41(0.36,0.47) 0.40(0.34,0.45) 0.37(0.31,0.44) 0.40(0.36,0.44) 

𝛼𝛼2 0.20(0.16,0.24) 0.22(0.18,0.27) 0.23(0.18,0.29) 0.24(0.18,0.31) 0.21(0.17,0.25) 

𝛼𝛼3 0.08(0.05,0.10) 0.09(0.06,0.12) 0.09(0.06,0.13) 0.10(0.06,0.14) 0.08(0.06,0.11) 

vmy 
∈ 
[98,01] 

SL 
≤ 

 80 km/h 

𝛼𝛼0 0.39(0.29,0.48) 0.35(0.25,0.45) 0.35(0.25,0.45) 0.37(0.26,0.48) 0.37(0.27,0.46) 

𝛼𝛼1 0.43(0.33,0.54) 0.44(0.34,0.55) 0.43(0.33,0.53) 0.40(0.30,0.52) 0.43(0.33,0.53) 

𝛼𝛼2 0.17(0.10,0.24) 0.19(0.11,0.27) 0.20(0.12,0.29) 0.20(0.12,0.30) 0.18(0.11,0.26) 

𝛼𝛼3 0.02(0.00,0.05) 0.02(0.00,0.06) 0.02(0.00,0.06) 0.02(0.00,0.06) 0.02(0.00,0.05) 

SL 
≥ 

 90 km/h 

𝛼𝛼0 0.38(0.28,0.48) 0.33(0.23,0.44) 0.33(0.22,0.44) 0.35(0.23,0.47) 0.36(0.26,0.46) 

𝛼𝛼1 0.39(0.29,0.49) 0.40(0.30,0.51) 0.39(0.28,0.50) 0.36(0.26,0.48) 0.39(0.29,0.50) 

𝛼𝛼2 0.21(0.13,0.31) 0.24(0.14,0.35) 0.25(0.15,0.36) 0.26(0.15,0.38) 0.23(0.14,0.33) 

𝛼𝛼3 0.02(0.00,0.05) 0.02(0.00,0.07) 0.03(0.00,0.07) 0.03(0.00,0.07) 0.02(0.00,0.06) 

vmy 
∈ 
[02,05] 

SL 
≤ 

 80 km/h 

𝛼𝛼0 0.37(0.30,0.44) 0.33(0.26,0.40) 0.34(0.27,0.41) 0.36(0.28,0.43) 0.35(0.29,0.42) 

𝛼𝛼1 0.46(0.39,0.53) 0.47(0.40,0.55) 0.46(0.38,0.53) 0.43(0.35,0.51) 0.46(0.39,0.53) 

𝛼𝛼2 0.11(0.07,0.16) 0.13(0.09,0.18) 0.14(0.09,0.19) 0.14(0.09,0.20) 0.12(0.08,0.17) 

𝛼𝛼3 0.06(0.03,0.09) 0.07(0.04,0.11) 0.07(0.04,0.11) 0.07(0.03,0.12) 0.06(0.03,0.10) 

SL 
≥ 

 90 km/h 

𝛼𝛼0 0.37(0.30,0.44) 0.32(0.25,0.40) 0.33(0.25,0.40) 0.34(0.26,0.43) 0.35(0.28,0.42) 

𝛼𝛼1 0.42(0.34,0.49) 0.43(0.36,0.51) 0.41(0.34,0.49) 0.39(0.31,0.48) 0.42(0.35,0.49) 

𝛼𝛼2 0.15(0.10,0.21) 0.17(0.11,0.24) 0.18(0.12,0.24) 0.18(0.12,0.26) 0.16(0.11,0.22) 

𝛼𝛼3 0.07(0.03,0.11) 0.08(0.04,0.13) 0.08(0.04,0.13) 0.08(0.04,0.14) 0.07(0.04,0.11) 

vmy 
∈ 
[06,11] 

SL 
≤ 

 80 km/h 

𝛼𝛼0 0.38(0.33,0.43) 0.33(0.29,0.38) 0.34(0.29,0.39) 0.36(0.29,0.42) 0.36(0.32,0.40) 

𝛼𝛼1 0.41(0.36,0.47) 0.43(0.38,0.48) 0.41(0.36,0.46) 0.39(0.32,0.45) 0.42(0.37,0.46) 

𝛼𝛼2 0.14(0.11,0.18) 0.17(0.13,0.20) 0.17(0.14,0.21) 0.18(0.13,0.23) 0.16(0.13,0.19) 

𝛼𝛼3 0.06(0.04,0.09) 0.07(0.05,0.10) 0.07(0.05,0.10) 0.08(0.04,0.12) 0.07(0.05,0.09) 

SL 
≥ 

 90 km/h 

𝛼𝛼0 0.37(0.31,0.42) 0.32(0.26,0.37) 0.32(0.26,0.38) 0.33(0.26,0.41) 0.35(0.30,0.40) 

𝛼𝛼1 0.37(0.32,0.43) 0.39(0.33,0.44) 0.37(0.32,0.43) 0.35(0.28,0.42) 0.37(0.32,0.43) 

𝛼𝛼2 0.19(0.15,0.24) 0.21(0.17,0.27) 0.23(0.17,0.28) 0.23(0.17,0.30) 0.20(0.16,0.25) 

𝛼𝛼3 0.07(0.04,0.10) 0.08(0.05,0.12) 0.09(0.05,0.12) 0.09(0.05,0.14) 0.08(0.05,0.11) 

vmy 
∈ 
[12,20] 

SL 
≤ 

 80 km/h 

𝛼𝛼0 0.41(0.35,0.47) 0.37(0.31,0.43) 0.38(0.32,0.44) 0.40(0.32,0.47) 0.39(0.34,0.45) 

𝛼𝛼1 0.43(0.37,0.49) 0.45(0.39,0.51) 0.43(0.37,0.49) 0.40(0.33,0.48) 0.43(0.37,0.49) 

𝛼𝛼2 0.10(0.07,0.14) 0.12(0.08,0.16) 0.12(0.08,0.17) 0.13(0.08,0.18) 0.11(0.08,0.15) 

𝛼𝛼3 0.06(0.03,0.09) 0.07(0.04,0.10) 0.07(0.04,0.11) 0.07(0.03,0.12) 0.06(0.04,0.09) 

SL 
≥ 

 90 km/h 

𝛼𝛼0 0.41(0.35,0.47) 0.37(0.30,0.43) 0.37(0.30,0.44) 0.39(0.30,0.46) 0.39(0.33,0.45) 

𝛼𝛼1 0.39(0.33,0.46) 0.40(0.34,0.47) 0.39(0.32,0.45) 0.36(0.29,0.44) 0.39(0.33,0.45) 

𝛼𝛼2 0.14(0.09,0.18) 0.15(0.11,0.21) 0.16(0.11,0.22) 0.17(0.11,0.23) 0.15(0.10,0.19) 

𝛼𝛼3 0.06(0.04,0.10) 0.08(0.04,0.12) 0.08(0.04,0.12) 0.08(0.04,0.14) 0.07(0.04,0.11) 

  𝛾𝛾 1.00(1.00,1.00) 0.92(0.80,1.00) 0.86(0.50,1.00) 0.78(0.45,1.00) 0.94(0.88,0.99) 

Table AIII 
The estimated 𝛼𝛼𝑖𝑖 ,  𝑖𝑖 = 0,1,2,3, and 𝛾𝛾 parameters calculated using the GIDAS data set (mean, (2.5, and 97.5 
percentiles in brackets)). 
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  crash year group 
age 

cohort 
 2012-2014 2015-2017 2018-2020 2012-2020 

(weighted) 

18-44 

S0 97.43(97.20,97.66) 97.11(96.85,97.36) 96.90(96.63,97.17) 97.13(96.88,97.38) 
S1 1.66(1.43,1.89) 1.87(1.62,2.13) 2.01(1.74,2.29) 1.86(1.61,2.11) 

S2 0.49(0.35,0.64) 0.55(0.39,0.73) 0.59(0.42,0.78) 0.55(0.39,0.72) 

S3 0.42(0.32,0.54) 0.47(0.35,0.60) 0.49(0.37,0.63) 0.47(0.35,0.59) 

S1+ 2.57(2.34,2.80) 2.89(2.64,3.15) 3.10(2.83,3.37) 2.87(2.62,3.12) 
S2+ 0.91(0.74,1.09) 1.02(0.83,1.22) 1.09(0.88,1.31) 1.01(0.83,1.22) 

P2 3.99(3.91,4.08) 4.50(4.45,4.55) 4.84(4.80,4.89) 4.47(4.44,4.51) 

P3 0.18(0.16,0.20) 0.19(0.18,0.20) 0.20(0.19,0.21) 0.19(0.18,0.20) 

45-64 

S0 97.56(97.31,97.81) 97.35(97.09,97.60) 97.14(96.87,97.41) 97.34(97.09,97.59) 
S1 1.61(1.37,1.86) 1.76(1.51,2.02) 1.89(1.62,2.17) 1.76(1.51,2.02) 

S2 0.45(0.31,0.61) 0.50(0.35,0.67) 0.53(0.37,0.71) 0.50(0.35,0.66) 

S3 0.38(0.27,0.49) 0.40(0.29,0.52) 0.43(0.31,0.56) 0.40(0.30,0.53) 
S1+ 2.44(2.19,2.69) 2.65(2.40,2.91) 2.86(2.59,3.13) 2.66(2.41,2.91) 

S2+ 0.83(0.66,1.01) 0.90(0.71,1.09) 0.96(0.77,1.17) 0.90(0.72,1.10) 

P2 3.90(3.73,4.06) 4.26(4.16,4.36) 4.59(4.50,4.68) 4.26(4.19,4.33) 

P3 0.14(0.11,0.17) 0.14(0.12,0.16) 0.15(0.14,0.17) 0.15(0.13,0.16) 

65-74 

S0 97.42(97.16,97.67) 97.05(96.78,97.31) 96.88(96.60,97.16) 97.09(96.83,97.35) 

S1 1.63(1.40,1.88) 1.87(1.61,2.14) 1.99(1.72,2.28) 1.84(1.59,2.11) 

S2 0.53(0.37,0.70) 0.60(0.42,0.79) 0.63(0.44,0.83) 0.59(0.42,0.78) 

S3 0.43(0.31,0.56) 0.48(0.35,0.63) 0.49(0.36,0.65) 0.47(0.35,0.62) 
S1+ 2.58(2.33,2.84) 2.95(2.69,3.22) 3.12(2.84,3.40) 2.91(2.65,3.17) 

S2+ 0.95(0.77,1.15) 1.08(0.87,1.30) 1.13(0.91,1.36) 1.06(0.86,1.28) 

P2 3.82(3.63,4.00) 4.38(4.26,4.49) 4.65(4.55,4.76) 4.31(4.24,4.39) 
P3 0.17(0.13,0.21) 0.19(0.16,0.21) 0.18(0.16,0.20) 0.18(0.17,0.20) 

75+ 

S0 96.60(96.14,97.03) 96.27(95.89,96.64) 95.96(95.57,96.35) 96.29(95.95,96.64) 

S1 2.05(1.70,2.43) 2.24(1.90,2.59) 2.42(2.06,2.80) 2.24(1.91,2.58) 

S2 0.73(0.51,0.99) 0.80(0.56,1.07) 0.87(0.61,1.16) 0.80(0.56,1.06) 
S3 0.61(0.40,0.85) 0.69(0.48,0.92) 0.74(0.52,0.99) 0.67(0.47,0.89) 

S1+ 3.40(2.97,3.86) 3.73(3.36,4.11) 4.04(3.65,4.43) 3.71(3.36,4.05) 

S2+ 1.35(1.05,1.67) 1.49(1.20,1.80) 1.61(1.30,1.94) 1.47(1.19,1.77) 

P2 4.98(4.48,5.50) 5.42(5.13,5.72) 5.88(5.62,6.14) 5.42(5.22,5.63) 
P3 0.29(0.17,0.42) 0.34(0.26,0.42) 0.36(0.30,0.43) 0.32(0.27,0.37) 

Table AIV 
S-distribution for different time period and vehicle group [12,20] and age cohort. Note: P3 =�  deceased. 

Figures 

 
Fig. A2:  Mapping of the P-scale to the S-scale.  
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Fig. A3: Shift in injury severity (𝑆𝑆0 → 𝑆𝑆1 → 𝑆𝑆2 → 𝑆𝑆3) across the age groups (18–44, 45–64, 65–74, 75+ yoa), for 
vehicle model years (vmy) [12,20], and crash years 2012–2020 (weighted). 
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury 
severity. 
Columns represent the 10% of the crashes with the most severe injuries. 
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Fig. A4: Shift in injury severity (𝑆𝑆3 → 𝑆𝑆2 → 𝑆𝑆1 → 𝑆𝑆0) across vehicle model years (vmy) [80,97], [98,01], [02,05], 
[06,11], to [12,20], for crash years 2012–2020 (weighted). 
All injury severity shifts are statistically significant at the 95%-level. 
Columns represent the 10% of the crashes with the most severe injuries. 
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Fig. A5: Comparison of injury severity (𝑆𝑆3 → 𝑆𝑆2 → 𝑆𝑆1 → 𝑆𝑆0) between vehicle model years (vmy) [80,97] to 
[12,20], stratified by age group for (18–44, 45–64, 65–74, 75+ yoa), for crash years 2012–2020 (weighted). 
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury 
severity.  
Columns represent the 10% of the crashes with the most severe injuries. 
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Fig. A6: Shift in injury severity (𝑆𝑆3 → 𝑆𝑆2 → 𝑆𝑆1 → 𝑆𝑆0) across the crash years (2012-2014, 2013-2015, 2014-2016, 
2015-2017, 2016-2018, 2017-2019, 2018-2020), for vehicle model years (vmy) [12,20]. 
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury 
severity. 
Columns represent the 10% of the crashes with the most severe injuries. 
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Fig. A7:  Shift in injury severity (𝑆𝑆3 → 𝑆𝑆2 → 𝑆𝑆1 → 𝑆𝑆0) across the crash years (2012-2014, 2013-2015, 2014-2016, 
2015-2017, 2016-2018, 2017-2019, 2018-2020), stratified by age group for (18–44, 45–64, 65–74, 75+ yoa), for 
vehicle model years (vmy) [12,20]. 
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury 
severity. 
Columns represent the 10% of the crashes with the most severe injuries. 
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Fig. A8: Shift in injury severity (𝑆𝑆3 → 𝑆𝑆2 → 𝑆𝑆1 → 𝑆𝑆0) across vehicle model years (vmy) [80,97], [98,01], [02,05], 
[06,11], to [12,20], stratified by age group for (18–44, 45–64, 65–74, 75+ yoa), for crash years 2012–2020 
(weighted). 
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury 
severity. 
Columns represent the 10% of the crashes with the most severe injuries. 
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Temporal Stability of the 𝜶𝜶 Parameter 
The crash year is included as an independent variable in the logistic regression models of Section III (Vehicle 

Model Year) to test whether the 𝛼𝛼-parameters are temporally stable. The crash year is treated in a one-hot-
encoding fashion where the crash year 2010 is the baseline to avoid any monotonic assumption. The following 
table states the p-values of the corresponding parameters in the three logistic regression models (𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 0,1,2). 
For each 𝛼𝛼, the absolute maximum over all these coefficients can be used as a test statistic to test directly whether 
all 10 coefficients are different from zero. Bootstrap is employed for p-values to take the multiple testing issue 
into account. We obtain the following p-values 𝛼𝛼0: 0.57,𝛼𝛼1: 0.38,𝛼𝛼2: 0.62. Consequently, the logistic regression 
model seems unaffected by the crash year. 
 

Crash 
Year 𝛼𝛼0 𝛼𝛼1 𝛼𝛼2 

2011 0.22 0.43 0.38 

2012 0.35 0.54 0.44 
2013 0.30 0.23 0.13 

2014 0.76 0.48 0.29 

2015 0.17 0.35 0.17 

2016 0.35 0.18 0.10 
2017 0.32 0.12 0.67 

2018 0.95 0.71 0.97 

2019 0.54 0.15 0.87 
2020 0.39 0.97 0.98 

Table AV 
p-values of the crash year coefficients in the logistic regression models for 𝛼𝛼𝑖𝑖𝑖𝑖 = 0,1,2. 
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Injury Severity by Crash-Year and Age Group 
 
Numerical Example 

We simulated crash data, which mimics a national accident database and an in-depth accident study. The 
national accident database contained all the accidents but a lesser degree of detail for each crash. The in-depth 
accident study has a high level of detail for each accident but contains only a subset of all accidents and is biased 
due to some sampling criteria. 
The General Approach 

We consider four traffic domains which result in four different technical crash severity exposures. Additionally, 
we consider single and multi-vehicle crashes with one or more occupants in each vehicle. Injury risk functions 
transfer technical crash severity into medical crash injury severity. Medical crash injury severity is measured in 
two scales. One with a higher level of detail is denoted by 𝐼𝐼𝐼𝐼 and 5 levels are considered: 0,1,2,3,4. The levels are 
motivated by the MAIS:  0 (MAIS0); 1 (MAIS1); 2 (MAIS2); 3 (MAIS3); 4 (MAIS4+). The other scale is 𝑃𝑃 and 
corresponds to a police-reported injury measure. It contains 3 levels (0,1,2) which corresponds to 2 (fatal), 
1 (hospitalised for crash related causes and non-fatal), 0 otherwise. Occupants can be belted or unbelted, 
corresponding to different underlying injury risk functions. 
The Specifics 

To elaborate, we consider 𝑛𝑛 crashes. Let 𝑇𝑇𝑅𝑅𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 be the technical crash severity for crash 𝑖𝑖. Technical 
crash severity is sampled independently from the exponential distribution, where the traffic domain results in 
different parameters for the exponential distribution. The four traffic domains are motivated by the speed limits 
(in km/h) (0,30], (30,50], (50,80], (80,100]. The parameters of the exponential distribution are given by fitting 
an exponential distribution to the 𝛥𝛥𝛥𝛥 values (in km/h) in GIDAS for that traffic domain. The memorylessness 
property of the exponential distribution is used to take the sampling issue of GIDAS into account, and only 𝛥𝛥𝛥𝛥 
values greater than 20 km/h are considered for the estimation. 

For the four traffic domains we compute: 

(0,30]:𝑇𝑇𝑅𝑅𝑖𝑖 ∼ exp(0.11), 𝑖𝑖 = 1, … ,0.15𝑛𝑛,
(30,50]:𝑇𝑇𝑅𝑅𝑖𝑖 ∼ exp(0.03), 𝑖𝑖 = 0.15𝑛𝑛 + 1, … ,0.7𝑛𝑛,
(50,80]:𝑇𝑇𝑅𝑅𝑖𝑖 ∼ exp(0.06), 𝑖𝑖 = 0.7𝑛𝑛 + 1, … ,0.9𝑛𝑛,

(80,100]:𝑇𝑇𝑅𝑅𝑖𝑖 ∼ exp(0.05), 𝑖𝑖 = 0.9𝑛𝑛 + 1, … ,𝑛𝑛.

 

The four traffic domains have a share of 0.15,0.55,0.2,and 0.1, respectively. Let 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖 indicate if accident 𝑖𝑖 is a 

single vehicle crash and we set 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.1), 𝑖𝑖 = 1, … ,𝑛𝑛, i.e., ℙ(single vehicle crash) = 0.1, see [13]. 
We set the expected number of vehicles involved in a multi-vehicle crash to 2.08, see [41]. Additionally, the 
number of involved vehicles is assumed to follow a Poisson distribution. Let 𝑁𝑁𝑁𝑁𝐶𝐶𝑖𝑖 =
number of vehicles in accident 𝑖𝑖 = 1 + (1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖)(𝑍𝑍𝑖𝑖 + 1),𝑍𝑍𝑖𝑖 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(0.08), 𝑖𝑖 = 1, … ,𝑛𝑛. We say that the 
number of occupants per vehicle follows a Poisson distribution, and the expected number of occupants per 

vehicle is set to 1.4 [42]. Let 𝑂𝑂𝑂𝑂𝐶𝐶𝑖𝑖 = Occupants per accident 𝑖𝑖 = ∑ 1𝑁𝑁𝑁𝑁𝐶𝐶𝑖𝑖
𝑗𝑗=1 + 𝑂𝑂𝑗𝑗,𝑖𝑖,𝑂𝑂𝑗𝑗,𝑖𝑖  ∼𝑖𝑖.𝑖𝑖.𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(0.4), 𝑗𝑗 =

1, … ,𝑁𝑁𝑁𝑁𝐶𝐶𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛. We set seat belt usage to 97 % [43] and draw this using independent Bernoulli random 
variables. We say that all vehicles (and occupants) involved in a crash have the same technical crash severity. The 
medical injury severity is obtained independently for each occupant. For each occupant with technical risk 𝑥𝑥 and 
belt status 𝑏𝑏, the medical injury severity in the 𝐼𝐼𝐼𝐼 scale is sampled according to ℙ(𝐼𝐼𝐼𝐼 = 𝑖𝑖𝑖𝑖|technical risk =
𝑥𝑥,belt status = 𝑏𝑏) = 𝑝𝑝𝑖𝑖𝑖𝑖,𝑏𝑏(𝑥𝑥), 𝑖𝑖𝑖𝑖 = 0,1,2,3,4, where the probabilities 𝑝𝑝𝑖𝑖𝑖𝑖,𝑏𝑏(𝑥𝑥) are obtained from the injury risk 
functions as follows. Let 

𝑅𝑅𝛽𝛽0,𝛽𝛽1(𝑥𝑥) = 1/ �1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝛽𝛽0 + 10 − 𝛽𝛽1𝑥𝑥 − (10/1.3)�log(log(𝑥𝑥 + 1) + 1)�
1/2
��. 

𝑅𝑅𝛽𝛽1,𝛽𝛽2(𝑥𝑥) is a logistic risk function, and the term (10/1.3)�log(log(𝑥𝑥 + 1) + 1)�1/2
 is used to push the curve 

to zero near the origin. Then, for 𝑖𝑖𝑖𝑖 = 1, … ,4,𝑏𝑏 = 0,1 
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𝑝𝑝𝑖𝑖𝑖𝑖,𝑏𝑏 = 𝑅𝑅𝛽𝛽0,𝑏𝑏,𝑖𝑖𝑖𝑖,𝛽𝛽1,𝑏𝑏,𝑖𝑖𝑖𝑖
(𝑥𝑥) � �1 − 𝑅𝑅𝛽𝛽0,𝑏𝑏,𝑘𝑘,𝛽𝛽1,𝑏𝑏,𝑘𝑘

(𝑥𝑥)�
4

𝑘𝑘=𝑖𝑖𝑖𝑖+1

,

𝑝𝑝0,𝑏𝑏(𝑥𝑥) = ��1 − 𝑅𝑅𝛽𝛽0,𝑏𝑏,𝑘𝑘,𝛽𝛽1,𝑏𝑏,𝑘𝑘
(𝑥𝑥)�

4

𝑘𝑘=1

,

 

where the parameters 𝛽𝛽0,𝑏𝑏,𝑖𝑖𝑖𝑖,𝛽𝛽1,𝑏𝑏,𝑖𝑖𝑖𝑖, 𝑏𝑏 = 0,1, 𝑖𝑖𝑖𝑖 = 1,2,3,4 are given by the following Table AVII. 

𝑔𝑔 1 0 
𝑖𝑖𝑖𝑖 1 2 3 4 1 2 3 4 

𝛽𝛽0,𝑔𝑔,𝑠𝑠 -3.52 -6.05 -8.45 -10.12 -1.57 -4.10 -6.32 -7.82 

𝛽𝛽1,𝑔𝑔,𝑠𝑠 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.09 

Table AVII: Model Parameters 

The police-reported risk 𝑃𝑃 is obtained from 𝐼𝐼𝐼𝐼 as follows:2 

ℙ(𝑃𝑃 ≥ 1|𝐼𝐼𝐼𝐼 = 𝑖𝑖𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧0 𝑖𝑖𝑖𝑖 = 0,

0.05 𝑖𝑖𝑖𝑖 = 1,
0.65 𝑖𝑖𝑖𝑖 = 2,
0.94 𝑖𝑖𝑖𝑖 = 3,
1 𝑖𝑖𝑖𝑖 = 4

, 

and 

ℙ(𝑃𝑃 = 2|𝐼𝐼𝐼𝐼 = 𝑖𝑖𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧0 𝑖𝑖𝑖𝑖 = 0,

0 𝑖𝑖𝑖𝑖 = 1,
0 𝑖𝑖𝑖𝑖 = 2,
0.04 𝑖𝑖𝑖𝑖 = 3,
0.63 𝑖𝑖𝑖𝑖 = 4

. 

Lastly, to simulate the sample criteria of an in-depth accident study as GIDAS, we set 
ℙ(accident 𝑖𝑖 in in-depth sample | at least one occupant in accident 𝑖𝑖 with 𝐼𝐼𝐼𝐼 ≥ 1) = 0.05 and 
ℙ(accident 𝑖𝑖 in in-depth sample | no occupant in accident 𝑖𝑖 with 𝐼𝐼𝐼𝐼 ≥ 1) = 0. The small probability of 0.05 
should consider that an in-depth study such as GIDAS is limited to only some areas of the national sample. Each 
accident in the in-depth accident study is then included in full detail, which means 𝐼𝐼𝐼𝐼,𝑃𝑃, technical risk, and traffic 
domain here. In contrast, the national accident database contains each accident but only limited information on 
the traffic domain and police-reported injury severity 𝑃𝑃 for each occupant. 

The objective is to estimate the injury distribution in detail: MAIS0–1, MAIS2, MAIS3, MAIS4+. We denote this 
as 𝑆𝑆 = 0, 1, 2, and 3, respectively. We compare the mapping approach present in this paper with the weighting 
approach. The mapping approach is applied as presented in Section III (The Link between P- and S-Scale). For the 
𝛼𝛼𝑖𝑖 parameters, the four traffic domains are grouped into two groups. The first three traffic domains form the first 
group, and the fourth one forms the second group. For the weighting approach, each case in the in-depth accident 
study gets a weight such that specific marginal distribution criteria are matched. This weighting can be done only 
to marginal distributions available in both samples. Thus, in this simulation, the distribution of the traffic domains 
between the weighted in-depth accident study and the national level are matched. We simulated 4 000 000 

 
2 As mentioned above, the injury severity 𝐼𝐼𝐼𝐼 is motivated by MAIS. Hence, ℙ(𝑃𝑃 = 2|𝐼𝐼𝐼𝐼 = 𝑠𝑠) can be understood 

as the fatality risk of MAIS0, MAIS1, MAIS2, MAIS3, and MAIS4+ injuries, respectively. Similarly, (𝑃𝑃 ≥ 1|𝐼𝐼𝐼𝐼 = 𝑖𝑖𝑖𝑖) 
can be understood as the risk of hospitalization or dying. The probabilities are oriented by the empirical 
probabilities in GIDAS. 
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crashes, and the in-depth study sampled of these about 72 000. The obtained injury severity distribution in the 
𝑃𝑃-scale is given in Table AVIII. The sampling criteria cause the in-depth sample to be heavily biased and tend 
towards more severe crashes. 

𝑃𝑃 full-sample in-depth sample 

0 98.83 91.33 

1 1.08 7.99 

2 0.09 0.67 

Table AVIII: Relative injury severity distribution in P-scale (simulation result) 

The injury distribution of the full-sample, in-depth study, and estimation approaches are given in Table AV. 
The weighted in-depth sample is less biased but the covariate traffic domain is not strong enough to reduce the 
bias substantially. Additional information, such as technical crash severity, would be required to eliminate all bias. 
The projection by mapping approach can eliminate the bias for ℙ(𝑆𝑆 = 2) and ℙ(𝑆𝑆 = 3) because the 
corresponding conditional probabilities are unaffected by the sampling criteria. The bias for ℙ(𝑆𝑆 = 1) and 
ℙ(𝑆𝑆 = 0) is also substantially reduced although not completely since the probability ℙ(𝑆𝑆 = 0|𝑃𝑃 = 0) is assumed 
to be 100%, but it is actually 99.67%. However, this conditional probability cannot be estimated without bias 
using the in-depth sample due to the sample criteria. Indeed, the conditional probability in the in-depth sample 
is 97.3%. What can be done is a sensitivity analysis on the assumption ℙ(𝑆𝑆 = 0|𝑃𝑃 = 0) = 1. The sample criteria 
of the in-depth sample results in a bias towards more severe injuries and, consequently, an undersampling of 𝑆𝑆 =
0 injuries. Hence, the probabilities of the in-depth sample for ℙ𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑆𝑆 = 𝑠𝑠|𝑃𝑃 = 0), 𝑠𝑠 = 0,1,2,3 can be used 
as a lower bound in a sensitivity analysis. That is we set ℙ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑆𝑆 = 𝑠𝑠|𝑃𝑃 = 0) = ℙ𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑆𝑆 = 𝑠𝑠|𝑃𝑃 = 0) and 
redo the mapping. The results of this approach are denoted as mapping (SALW) in Table AV. This mapping (SALW) 
can be understood as a bound towards a more severe injury distribution, i.e., given the sampling criteria of the 
in-depth study, the injury distribution of the full sample cannot be more severe than mapping (SALW). Note that 
even mapping (SALW) is less biased than the weighted in-depth sample. 

𝑆𝑆 ≈MAIS full-sample in-depth sample weighting mapping mapping (SALW) 
0 0–1 98.76 90.75 91.26 99.08 96.43 
1 2 0.89 6.57 6.23 0.57 3.14 
2 3 0.22 1.67 1.58 0.22 0.29 
3 4+ 0.14 1.01 0.94 0.14 0.14 

Table AIX: Relative injury severity distribution in 𝑆𝑆-scale (simulation result) 

IRC-24-125 IRCOBI conference 2024

980


	I. INTRODUCTION
	II. METHODS
	Data Enhancement

	III. Application
	Data Sets
	National Data Set (DESTATIS)
	In-depth Sample (GIDAS)

	Injury Coding in the Data Sets
	The 𝑷-Scale (injury severity documented by police officers)
	𝑺-Scale (injury severity using AIS-coding)

	Homogeneous Subgroups/Cut-off Points
	Occupant Age
	Vehicle Model Year
	Traffic Domains
	Crash Year
	Mapping of DESTATIS 𝑷-Coding to the 𝑺-Scale
	The Link between 𝑷- and 𝑺-Scale
	Estimation of the ,𝜶-𝒊., and 𝜸 Parameters


	IV. RESULTS
	Timeline Trends on the 𝑺-Scale
	Crash Years
	Age Groups
	Vehicle Model Year
	Age Group and Vehicle Model Year

	V. DISCUSSION
	MAIS3+ Mapping to the National Level
	Application to Timelines
	Vehicle Model Years 2012-2020, Only
	Limitations
	DESTATIS Sampling Limits
	GIDAS Sample Size Limits


	VI. CONCLUSION
	VII. REFERENCES
	VIII. APPENDIX
	Tables
	Figures
	Temporal Stability of the 𝜶 Parameter
	Injury Severity by Crash-Year and Age Group
	Numerical Example
	The General Approach
	The Specifics





