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I. INTRODUCTION

Rapid head motion during sporting incidents can produce traumatic brain injury. Advancements in
instrumented mouthguards (iMGs) have enabled the measurement of head kinematics during these incidents,
producing objective biomechanical data at large scale [1]. The finite element (FE) brain models can use these
kinematics data to estimate brain strain distribution across the brain [2]. However, the computational demands
of FE brain simulations limit their application to rapid brain response prediction. To address this problem,
researchers have developed pre-trained models using machine learning (ML) to calculate brain strain distribution
[3-4]. However, currently these models cannot be deployed on iMGs, and for using them on the pitch-side, they
require time-series signals of head kinematics, which cannot be transmitted reliably from iMGs in real-time. In
this work, we propose an eXtreme Gradient Boosting (XGBoost) model, which uses two features from the head
kinematics to calculate strain in the whole brain and 6 regions of interest (ROIls). The success of this model for
accurate prediction of brain strain can address the costly computation of FE simulations and can allow for
integration with the iMG system for near real-time prediction.

Il. METHODS
Data Description
To build the model, we used head kinematics data in elite rugby collected by the Protecht iMG [5-6]. The
mouthguard recorded 104 ms signals of linear acceleration and rotational velocity, which were used for brain
simulations. More details on the iMG and data processing can be found in [5]. After video verification, 1701 head
acceleration events were included in this study, with distribution of peak kinematics shown in Figure 1. The
dataset was then augmented by utilising the head symmetry with respect to the sagittal plane. The Imperial
College FE model of brain biomechanics was used to predict strain in the brain [2]. This model has been validated
against experiments where controlled rotational motion was applied to cadaver heads and brain/skull relative
displacement was measured using the sonomicrometry technique [7-8]. We extracted the 90th percentile
maximum principal strain (MPS90) across the whole brain and in 6 ROls used in previous studies to quantify brain
white matter abnormalities [9].
Machine Learning Model Development and Assessment
Features of the head kinematics were extracted and their correlation with MPS90 was examined. Finally, two
features from the resultant rotational velocity (Jw|) and acceleration (|a|) time-series were extracted as the
model input: 1) the difference between the maximum and minimum values, and 2) the square root of the absolute
of the maximum value. These features showed highest correlation with the whole-brain MPS90 (Table 1).
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Figure 1 Distribution of peak rotational velocity (PRV) and peak rotational
acceleration (PRA) in the dataset. Square root of abs of max 0.817 0.815

XGBoost is an ensemble learning algorithm; its embedded parallel processing accelerates model learning. We
developed XGBoost models to map kinematics data to MPS90 in the whole brain. The dataset was split into 80:20
for model training and testing. A set of best parameters of the XGBoost model were obtained by grid search
method with 5-fold cross validation. The objective function was mean squared error. We used the Bland-Altman
analysis to visualise the difference between the MPS90 calculated from the FE simulations and ML predictions.
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To evaluate the prediction accuracy, correlation coefficient R? was calculated by comparing the true and predicted
MPS90 in ROI.

lll. INITIAL FINDINGS

The selection of the optimal parameter set for the XGBoost model was based on maximising the negative mean
absolute error (negative MAE) which assesses the extent of prediction variance from the true MPS90. The result
of the grid search is shown in Figure 2. The final tuning results were n_estimator=400, learning_rate=0.15, and
max_depth=28. Other parameters adopted default values.

For conciseness, we present the Bland-Altman plot for the brain stem in Figure 3, where 95% confidence
interval (Cl) line of agreement (LOA) is defined. 18 of the 419 test data were out of 95% CI LOA bounds, indicating
that 95.70% of the prediction agreed with the true MPS90. The R? between the true MPS90 and ML prediction in
each ROl is shown in Table Il. The averaged R? across all brain ROIs was 0.936.
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IV. DISCUSSION

The proposed XGBoost model significantly reduces computational time for brain strain calculation, enabling
fast prediction of MPS90 in ROIs using two kinematic features only. Its inference takes less than 0.001s on a PC
(8GB RAM, Apple M1 CPU), whereas the FE simulation on a workstation (64GB RAM, Intel Core i7 CPU) requires
5-6 hours per impact. The model's accuracy (0.936) is comparable to that of CNN (0.972) and DNN (0.897) [3-4],
but it should be noted that different datasets and FE models are used to build these models.

One limitation of this work is that the effects of anatomical diversity on brain strain was not considered; this
should be addressed in future studies, similar to recent work [10]. Another limitation is that this study uses data
from rugby. The prediction accuracy of the model should be tested and if necessary improved for other sports.

iMGs capture and transmit kinematics signals to the receiver located by pitch-side, but the quality of signal
transmission varies, posing challenges to receiving the signals either consistently or in real time. The proposed
XGBoost model, in contrast to other ML models, relies on two features from the signal, which can be transmitted
reliably even when the entire signal fails to reach the receiver successfully. Hence, the XGBoost model can be a
more robust choice for integration with iMGs for pitch side decision-making by providing immediate brain strain
predictions.
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