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Abstract Instrumented mouthguards are frequently used to study head impacts in sports. However, we
hypothesise that repeated usage of the mouthguard may compromise the fit on the teeth and result in lower
data quality. Sensor acceleration events were recorded from youth American football players. Events verifiable
on video were included and subjected to the mouthguard manufacturer’s classification algorithm. For each event,
the device provides a quality class (high, moderate, or low), which we examined for the various data cleaning
methods, and in relation to the duration of mouthguard usage. Out of all events (n=9,375), the proportions of
high-, moderate-, or low-quality events were 8%, 28%, and 64%, respectively. Among those, 184 events were
determined as true positives by video review and algorithm, with high-, moderate- and low-quality proportions
of 81%, 14%, and 5%. There was no correlation between mouthguard usage duration and signal quality for video-
verified events, however, there was a positive correlation when including all events (r=0.170, p=0.031), which is
contrary to our hypothesis. Whether the kinematics from low-quality events are valid is unknown, and whether
these should be included in analyses is questionable. Ongoing analysis of data from practices may provide further
clarification on signal quality and mouthguard wear-and-tear.
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I. INTRODUCTION

Instrumented mouthguards (iMGs) designed to measure head impacts during sports participation have been
used increasingly since 2014 [1]. The devices have allowed researchers to estimate the number and magnitude
of head acceleration events that may present clinical consequences on brain health in various sports and with
athletes of both sexes and various ages [2]. Beyond academia, many iMGs are available to the wider public, such
that parents can monitor their children’s head impacts, or a coach can assess their team’s impact load. In 2023,
iMGs also became mandated by World Rugby at the highest levels of the professional game to improve their head
injury identification process [3]. However, one issue when working with iMGs relates to damage caused by
inappropriate device care (e.g., excessive chewing, tearing of the mouthguard) resulting in loss of connectivity,
trouble charging the iMGs, and need for replacement, ultimately leading to head impacts not being recorded [4-
5].

Itis also reasonable to expect, from field observations and published images [4], that damage to the iIMG caused
by excessive chewing can seriously affect the fit on the teeth and make the iMG loose [6]. The lack of proper
coupling between a head impact sensor and the skull is a well-known challenge, as it leads to low-quality signals
incorporating large noise and sharp spikes [7-9], resulting in inaccurate kinematics and larger numbers of events
being recorded [10-12]. In consequence, the estimation of both the number and the magnitude of head impacts
measured on the field may be inaccurate, ultimately limiting our understanding of the effects of head impacts on
brain health. Therefore, it is important to determine whether and how damage and normal wear-and-tear
throughout a study period affect the quality and accuracy of the data being collected.

Although assessing the association between iMGs usage and data accuracy is not possible at this point due to
the absence of a reference measurement provided by a rigidly coupled device, analysing the quality of kinematic
signals can provide valuable insights on data quality. Primarily, if a sensor acceleration event (SAE), i.e. any
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recording by the iMG, is not associated with a true impact to the iMG user, as determined via video review, then
the spurious measurement is likely the result of noise or unwanted sensor motion. Secondly, the presence of
noise or spikes in the time series data has been visually assessed as an indicator of poor coupling to the skull [7].
The recent consensus on head acceleration measurement practices (CHAMP) suggests reviewing waveforms to
“identify spurious impacts—those with time-clipped impulses, ringing, multiple nonsensical impulses, and poor
signal-to-noise ratios” [9]. Signal-to-noise ratio and other frequency metrics have also been assessed
guantitatively [1][6]. Finally, some iMG manufacturers have incorporated a quality assessment into their post-
processing pipelines [13].

Given the frequent damage to iMGs from chewing and the known issues of poor mouthguard-to-skull coupling,
there is a need to assess whether wear-and-tear affects the quality of kinematic signals from head impacts.
Therefore, the objectives of this study were to (1) examine the quality of kinematic signals measured during sports
participation, using metrics provided by the iMG manufacturer, and (2) investigate the association between usage
and data quality throughout the study period. We hypothesise that repeated iMG usage leads to lower-quality
data, which may have consequences on the estimation of the exposure to head impacts.

Il. METHODS

Youth American tackle football players were recruited for this study approved by The Ohio State University
Institutional Review Board. Head impacts were measured using instrumented mouthguards during the 2023
football season. The present analyses pertain to a preliminary subset of data recorded for 40 athletes over 13
games, or 162 athlete exposures.

Instrumentation

Athletes (8-12 years, mean age 10.3 +1.2 years) were equipped with iMGs (V2, Prevent Biometrics [PB],
Minneapolis, MN). All but five iMGs were custom-made from upper dentition scans obtained by a trained dentist
or a trained member of the research team; the remaining five were of the boil-and-bite type to accommodate
braces. Each iMG comprises high-g and low-g triaxial accelerometers and an angular rate sensor, all sampling at
3200 Hz, with ranges of +200 g (high-g) and %35 rad.s on each axis, respectively. Sensor acceleration events
(SAEs) were triggered when any axis of linear acceleration exceeded 8 g and captured 10 ms pre- and 40 ms post-
trigger. Prevent Biometrics’ proprietary algorithm derives angular acceleration from angular velocity and
transforms linear acceleration to the estimated head’s centre of gravity. Data are filtered using a 4™ order, zero-
lag low pass Butterworth filter, for which the cutoff frequency varies based on the quality of the signal. According
to the manufacturer, a machine learning algorithm quantifies the signal-to-noise ratio for each event, attributes
it a quality class of 0-high, 1-moderate, or 2-low quality, and filters respectively with 200, 100, or 50 Hz cut-off
frequencies (Fig. 1). For moderate and low-quality events, the PB algorithm multiplied the resultant peak
velocities and accelerations by a correction factor (~1.3 and ~2.0, respectively) established from laboratory tests
and proposed to better approximate the true peaks for noisy events. Events with a resultant peak linear
acceleration (PLA) comprised between 10 and 200 g were downloaded from the PB portal in November 2023
(‘SoftwareVersion: 2.1.24’, ‘DTAVersion: 2.1.24 scaled’).

Event Verification and Inclusion

To distinguish between true head impacts and false positives, SAEs were verified using two methods
independently: (1) video review and (2) the manufacturer's proprietary algorithm. Method (1) for video review,
games were filmed using one camera (Sony Cybershot RX100 V, 4K resolution, 24 fps) zoomed-in on the play and
manually operated to follow the main group of players on the field. After starting the video recording, the
operator showed the time from their phone to the camera. Video reviewers blinded to the sensor data used this
time to match SAE timestamps to visible events and classify SAEs as true positive, false positive, or unverifiable
(e.g., when the athlete could not be seen on video). Each event was verified by one reviewer. Events occurring
before the start of the game, after the end, or during breaks (as noted by the camera operator) were automatically
classified as false positives. Method (2) for the manufacturer classification, PB mouthguards incorporate a
proximity sensor to determine whether the iMG is on the teeth at the moment of the event and classify SAEs as
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true or false positives. This algorithm is independent of the quality determination model described above, and
algorithm specifics were unavailable to the research team. Events were included for analysis only if they were

video-verified as true or false positives, and if the PB quality class was available.
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Fig. 1. Raw linear acceleration and angular velocity time series for examples of events classified as high (top),
moderate (middle), or low-quality (bottom) by the Prevent Biometrics model. The dashed vertical lines highlight
the time of the peak linear acceleration for each event.

Analyses

Throughout the study, of the 40 athletes, six needed their iMG replaced once and three needed it twice, primarily
because of connectivity issues often due to damage from chewing. Therefore, a total of 52 iMGs were included
in the analyses. The number of events determined as true or false positives were reported for both cleaning
methods, as well as the performance of the PB algorithm, using video review as reference. The proportions of
high-, moderate- and low-quality events, as determined by the PB model, were examined for all stages of data
cleaning, for individual athlete exposures, and for each mouthguard. For each event, the number of days passed
since the very first iMG use was calculated using the larger study dataset. The association between the number
of days since first use and the proportion of high-quality events for each athlete exposure was explored with a
linear regression. The hypothesis was that the longer the iMG had been in use, the fewer high-quality events
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would be recorded by the iMG.

Ill. RESULTS

Over the duration of the study, mouthguards were used for up to 95 subsequent days. The most uses for one
mouthguard was 54 exposures, including 7 games and 47 practices. Some mouthguards showed evident
mechanical wear, from slight bite marks to severe chewing, causing the non-sensor side to be flattened out.

A total of 9,375 sensor acceleration events (SAEs) measured from 162 athlete exposures were included for
analysis (40 athletes for 52 mouthguards in total, over 13 games) (Fig. 2). Mouthguards recorded a median of 22
SAEs per athlete exposure (interquartile range [IQR]: 10-68, range: 1-404). Out of those events, medians of four
video-verified and two PB-algorithm-classified events were available per athlete exposure (IQR: 1-8, range: 1-33,
and IQR: 1-6, range: 1-39, respectively). For both the video review and the PB algorithm, true positives amounted
to 5% of all included events. When considering video review as the reference, the performance of the PB
algorithm to correctly identify true contact events resulted in a sensitivity of 37%, a specificity of 97%, a positive
predictive value of 41%, and a negative predictive value of 96%.

Video review (9,375)
True (502) False (8,873)
True (448) True positives (184) False positives (264)
Prevent Biometrics
algorithm (9,375)
False (8,927) False negatives (318) True negatives (8,609)

Fig. 2. Contingency table for the number of events determined as True or False positives by the Prevent
Biometrics’ algorithm and the video review. The pie charts represent the proportions of high (green), moderate
(yellow), and low-quality (red) events.

Quality indicator. Over the 9,375 events included, 9% were classified by the PB algorithm as high-quality, 27%
as moderate-quality, and 64% as low-quality (Fig. 2). The proportions of high-, moderate-, and low-quality events
varied substantially across data cleaning methods, and the combination of video verification and PB algorithm
provided the most favourable quality distribution with 81% of high-quality events.

For individual athlete exposures, the proportion of high-quality events ranged from 0 to 73% (median [IQR]:
6.4% [0.0-16.7]) for all SAEs recorded (Fig. 3), and from 0 to 100% (25.0% [0.0-62.5]) for video-verified events
(Fig. 2). Six mouthguards showed only high-quality events, while 12 showed no high-quality events (26% of all
athlete exposures resulted in no high-quality events being recorded). There was variability in the proportion of
high-quality events across mouthguards and within athlete exposures.

Association between repeated usage and data quality. Over 162 athlete exposures and for all recorded SAEs,
there was a significant but weak linear correlation showing that the longer an iMG was in use, the larger the
proportion of high-quality events (r = 0.170, p = 0.031, Fig. 4). However, there was no correlation for SAEs
determined as true impacts through video review (r = 0.120, p = 0.246) or by the PB algorithm (r = 0.152,
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p = 0.154). There were insufficient true positive events determined by both methods for analysis.
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Fig. 3. Distribution of the proportion of high-quality video-verified events for individual mouthguards over the
available athlete exposures (39 out of 52 mouthguards recorded video-verified events). Mouthguards on the x-axis
are sorted by the median value in ascending order. Each mouthguard recorded for one to seven athlete exposures,
and each exposure had 1 to 33 video-verified events, independent of the Prevent Biometrics algorithm classification.
For each mouthguard, the dash represents the median and the X represents the mean.
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Fig. 4. Proportion of high-quality sensor acceleration events for each athlete exposure relative to the number of
days between the exposure and the first use of the mouthguard (N = 162 athlete exposures, including 9,375
events).

IV. DISCUSSION

This study analysed a manufacturer-provided indicator of signal quality for instrumented mouthguard events
resulting from youth American tackle football. Results showed that the proportion of high-quality events was low
in the full dataset (9%), but substantially increased for events that were confirmed by video review (37%) or the
manufacturer’s algorithm (52%), or both (81%). The proportion of high-quality events also varied between and
within participants, and overall seemed to maintain or even increase throughout the study period, which goes
against our hypothesis that event quality would decrease with iMG usage over time.

Data cleaning with video review or the manufacturer’s algorithm led to more favourable distributions of high-,
moderate-, and low-quality events. Of the events that were triggered when no verified contact happened, and
events where the proximity sensor determined the mouthguard was not on the teeth, the majority were of low
quality (66% for both methods), confirming a link between spurious events and noise in the kinematic signals.
Our findings also suggest that if an SAE verified by the PB algorithm is of low quality, it is likely not associated with
a contact event and could be discarded. The combination of both cleaning methods resulted in large proportions
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of high- and moderate-quality events, and most video-verified low-quality signals were discarded. However,
whether to include or exclude video-verified low-quality events is unclear. We suggest that while the kinematics
are likely unreliable, such events should be included in the analysis of impact counts after thorough video
verification. The improvement of quality-classification algorithms and methods to process noisy events is
necessary and on-going [14-15], although improving the fit of the iMG should be the priority.

There was no correlation between the number of days since the first iIMG use and the proportion of high-quality
events for video-verified or algorithm-confirmed SAEs. Furthermore, there was a marginal increase in quality for
all recorded SAEs over iMG usage time, which is contrary to our hypothesis. Our primary explanation is that of
survivorship bias, where the iMGs that fit best stayed in use for longer, while poorly fitted iMGs (mostly from
mechanical damage) were replaced more quickly. Additionally, from communication with the manufacturer, we
understand that the algorithm that uses the proximity sensor information may “learn” over time by refining the
individual thresholds used to determine whether the iMG is on the teeth or not, becoming more accurate as data
are recorded and processed. It might therefore affect the number of events that are recorded and explain some
of the inter- and intra-individual variations. Future analyses of the detection thresholds on our complete dataset
may shed some light on this hypothesis and verify that this association is not mainly driven by noise. With our
complete dataset including more athletes and exposures, we plan to conduct athlete-wise analyses to account
for the inter-individual variations, and further investigate the potential association between iMG usage and
quality.

As a preliminary analysis, some of this work’s limitations pertain to the limited availability of data while video
review for additional players and all practice sessions is in progress. Including SAEs from practices will allow for a
more complete record of iMG usage, as athletes trained at least three times more often than they played in
games. Therefore, rather than counting the number of days since first use as the main usage metric, we will count
the number of sessions the iMG was worn by a player. While this more detailed usage metric may explain some
of the intra-individual variability, we also expect that visible damage to the mouthguard influences the quality of
the data (some players chewed on their mouthguards so badly that no teeth indentation could be seen after just
a few practices). The subjective analysis of the visual wear-and-tear of the mouthguards is underway. We also
hypothesise that custom-fitted mouthguards would record less low-quality events by providing a better fit than
boil-and-bite iMGs [16]. We have insufficient data for boil-and-bite iMGs in this preliminary dataset, but initial
analyses indicate that there were more high-quality events for boil-and-bite iMGs than for custom iMGs, which
would go against our hypothesis. Finally, we reported on one of many metrics that could be used for assessing
signal quality. While our visual appraisal of the raw time traces matched well with the PB quality class, these
classes are determined through a “black box” algorithm: we do not know what features were used or how it was
developed, nor do we know when the algorithm has been or will be updated. Other metrics or replicable methods
to assess signal quality may prove informative.

V. CONCLUSION

This preliminary study explored the relatively new quality indicator provided by an instrumented mouthguard
manufacturer. We analysed the distribution of high-, moderate-, and low-quality events in our youth American
tackle football preliminary dataset of 13 games. While the number of low-quality events in the raw dataset was
large, the application of common data cleaning methods — video review to eliminate events not associated with
a collision and proprietary “black box” algorithm to discard events recorded while the mouthguard was off the
teeth — eliminated many such events. Our findings also highlighted that many events verified by video were of
low quality, which raises the question of including or excluding those from analysis. There was no significant
association between mouthguard usage duration and signal quality, which goes against our hypothesis that
repeated usage leads to lower-quality data. This preliminary dataset was limited to games only, but future
analyses will include practice sessions and a more accurate exposure quantification. Overall, the results of this
work will allow for a better understanding of instrumented mouthguard data, which will help refine rigorous
practices to improve data quality, and thereby generate more accurate datasets for the study of brain health.
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