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Enhancing Data in National Crash Statistics using an In-depth Study.

Jonas Krampe, Mirko Junge

Abstract After successfully introducing projects to reduce traffic accident deaths, the European Union
focuses on lowering the seriously injured as defined by the Abbreviated Injury Scale (AlS). We used in-depth crash
investigation data for injury severity projection to get MAIS3+ (Maximum AIS) injury severity distribution
information for a national data set.

In contrast to the projection method by weighting, the approach presented here maps the distribution of
interest, i.e., the distribution of a particular variable, from the in-depth study to the national level. The scheme
works by transferring conditional probabilities—estimated using the in-depth survey—to the national level and
using these conditional probabilities to supplement the distribution information from the national database. Even
though the enhanced national data set provides only injury severity distribution information, it can be used to
analyse the temporal stability of the crash environment at different injury severity levels.

As an application of the method, we added MAIS2+, 3+, and 4+ injury severity distribution information, using
the German in-depth Accident Study (GIDAS) information, to the German national crash data set and investigated
the shift in injury severity over the crash years. Each new crash test standard shows a statistically significant injury
severity reduction.

Keywords Projection, data enhancement, national crash statistics, in-depth crash investigation, MAIS3+ injury
severity level.

I. INTRODUCTION

Policy evaluation, e.g., evaluating new advanced driver assistance systems or monitoring political objectives
such as Vision Zero of the European Union [1], is a significant application of crash databases. However, national
crash databases often lack detailed information for such assessments; consequently, biased in-depth crash
studies are often used for policy evaluation. In-depth crash studies such as National Automotive Sampling System
Crashworthiness Data System (NASS-CDS) for the US or German in-depth Accident Study (GIDAS) for Germany are
helpful for policy evaluation only if projected to the national level, which means the information of the in-depth
study needs to be transformed such that it is representative on the national level.

One approach to projecting an in-depth crash study to a national level is weighting the in-depth cases. The in-
depth crash study is treated as a sub-sample of the national crash data. Therefore, each case in the national crash
data has a probability of being included in the in-depth crash study. Under the assumption of non-zero inclusion
probabilities, the weights can be chosen as their inverse. For instance, the weights in NASS-CDS are determined
this way. To elaborate, NASS-CDS uses a multi-stage sampling scheme for case selection. In the first step,
representative counties and police jurisdictions are chosen. Then, the researchers select a sub-sample for an in-
depth investigation of the crashes occurring in the selected region. Finally, the selection scheme is chosen so that
more severe injuries are more likely to be sampled, and the focus is on tow-away crashes only [2].

In NASS-CDS the selection probabilities at each stage are known. Thus, the product of all selection probabilities
results in the inclusion probabilities for each case; inversion of the inclusion probabilities determines the weights
[3]. Note that the inclusion probability of non-tow-away crashes is zero. Thus, the weighted NASS-CDS sample
can only represent all US tow-away crashes and not all US crashes. In the present study, we denote such an
approach as weighting by inclusion probability.

The in-depth study GIDAS, see Section lll (In-depth Sample (GIDAS)) for further details, is a sub-sample of
German crash data. However, GIDAS does not follow a statistical sampling scheme, and the probabilities for case
inclusion are unknown. Instead, GIDAS has a specific sampling criterion: A crash with an injured participant [4].
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References [5-6] proposed to project these samples to the national level by weighting the in-depth study by
the weights chosen such that the contingency tables for a set of covariates matches. We denote this approach as
weighting by matching of covariates. For instance, possible covariates are crash location or crash type. Since too
many covariates lead to an overfit, the covariates must be carefully selected. Reference [6] suggest evaluating
the fit using a crash severity measure available in both data sets, such as the police-reported crash injury severity.
However, since the weights are built upon covariates available in both databases, i.e., national level and in-depth,
it is indeterminable how well this approach works for variables only available in the in-depth study. Due to the
sample criterion, non-severe crashes are underrepresented in GIDAS, and most likely, some crash types are not
included. Thus, some inclusion probabilities are zero, making the computation of the universal weights
impossible—universal in the sense that a weighted in-depth study transfers representatively all variables of the
in-depth study to the national level. In particular, universal weights require that the in-depth data set be split into
different subgroups so that each in-depth subset is representative of the corresponding subgroup on the national
level.

A sample criterion such as the one used in GIDAS requires very particular subgroups. For example, for crashes
such as 40-year-old men in full-frontal single-vehicle crashes with Av=40km/h, the in-depth study and the
national database would be similar even though the in-depth study tends to more severe crashes. However, if an
important variable such as age or Av is dropped, a sample criterion leading to more severe crashes would mean
that the in-depth study is not representative anymore. Due to limited crash information in the national data set,
such detailed subgroups cannot be built using the national database. Hence, the weights cannot be calculated.
Additionally, the sample sizes of the different subgroups would be tiny, which could make statistical reasoning
difficult. Thus, it is indeterminable if such universal weights can be achieved by matching contingency tables of
covariates.

This paper goes beyond the weighting with universal weights by changing the perspective: Instead of weighting
the in-depth study to match the distribution of some covariates at the national level, it enhances the information
in the national database with data from the in-depth study. In contrast to the previous projection methods by
weighting, the approach presented here maps the distribution of interest, i.e., the distribution of a particular
variable, from the in-depth study to the national level. We denote this as mapping of conditional probabilities.
That means the projection is not made case-by-case but on an aggregated level, which can be understood as a
(sub)-population level. The approach works by transferring conditional probabilities—estimated using the in-
depth study—to the national level and using these conditional probabilities to enhance the national database.
The underlying assumption is that the used conditional probabilities coincide between both data sets. Thus, if the
assumption holds, the enhanced national database possesses the same representative properties as the original
national database. In this case, the enhanced national database can be considered an unconditional data set, e.g.,
not restricted to tow-away crashes (NASS) or crashes with at least one injured occupant (GIDAS). Such
unconditional national data is beneficial if the interest is on trend in the injury severity distribution over time, as
sampling criteria like crashes with at least one injured person could lead to a non-negligible bias. Furthermore,
working on an aggregated level, not on a case-by-case level, has the advantage that only aggregated information
is required to do the fit. For instance, no case-level information from the national database is needed, which can
be an advantage regarding privacy requirements. The method is illustrated in Figure 1. A more detailed
mathematical description is given in Section Il (METHODS).

Let us elaborate on the main argument of transferring conditional probabilities. This approach assumes that
the conditional probabilities coincide between the in-depth study and the national database so that information
can be transferred. This assumption may not hold for both data sets in general but for the particular sub-
populations of interest. From the perspective of the weighting approach, conditional probabilities can be
translated to weights. However, if the national database is enhanced with multiple variables, different weights
would be used for each variable. Hence, the method presented here can be seen as a generalisation of the
weighting approach where different weighting schemes might be used. Additionally, working with conditional
probabilities has the advantage of interpreting conditional probabilities is easier than weights alone. Both
mapping of conditional probabilities and weighting by matching of covariates rely on non-testable assumptions.
However, the interpretability of conditional probabilities can help in arguing whether it is likely or not that the
conditional probabilities of the in-depth study coincide with the national database for the particular sub-
population of interest.
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Note that this approach is not limited to using a single in-depth study, i.e., the national database can be
enhanced with multiple variables where the information for each of these variables might come from different
in-depth studies.

Fig. 1: Supplementing the marginal distributions of the national data set (blue) with the in-depth data set (red).

Returning to our outset, the mean objective of the European Vision Zero is to reduce the number of fatalities
and serious injuries as defined by the Maximum Abbreviated Injury Scale (MAIS3+) [7] to zero on European roads
by 2050 [1]. However, many national crash databases do not provide AIS injury information, making close
monitoring difficult. The mapping of conditional probabilities approach can help to fill this gap. This paper
presents an application of mapping of conditional probabilities to German crash data. Hence, it closes the
monitoring gap for Vision Zero in Germany and shows how new insights can be gained from the enhanced national
data set. The DESTATIS (Deutsches Statistik-Informationssystem, engl. German statistic information system)
national crash data is supplemented with detailed medical data from an in-depth GIDAS database. This approach
enables the investigation of the shift in injury severity over crash years. One striking finding of such investigation
is that the crash environment exhibits notable temporal instability even after controlling for factors like model
vehicle year and focusing exclusively on injury severity of occupants in modern vehicles. Specifically, it is observed
that the nature of traffic accidents is changing from year to year, becoming increasingly aggressive. This temporal
instability underscores the dynamic and evolving nature of road safety challenges, see among others [8-9].

Il. METHODS

This section defines the method mapping of conditional probabilities and elaborates on its mathematical
details.

Data Enhancement

Let X and Y be discrete random variables with the outcomes X, ..., Xp and Y, ... » Vg respectively.
Furthermore, the in-depth study has information on X and Y, whereas the national database contains
information on X only. We mark by subscript N the national level and by subscript I the in-depth study, i.e., Y;
marks a variable in the in-depth study. Note that the distribution of Yy is unknown, and the objective is to enhance
the national level with information about Yy. The approach is as follows. First note that we have for any outcome

Vi € {Yo, ) ¥q}
P(Yy =y) = P (YN = YilXy = xj)[P(XN = xj)- ¢y
j=0
On national level the probabilities IP(XN = xj) are known (or can be estimated at least). Then, to enhance

p

the national level with IP(Yy = y;) the underlying assumption is that
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P(Yy = yilXy = %) = P(Y; = y;|X; = x;) foralli,j. (2)
Hence, we obtain

p
P(y =y = ) P (¥ = nil¥, = x)P(Xy = x). 3)
j=0

That is, the previously unknown distribution of Yy is now given by known (or at least estimable) quantities. To
apply this to data, the probabilities IP(XN = xj),j = 0, ..., p can be estimated using the national data, and the
conditional probabilities IP’(YI = y;|X; = xj),i =0,..,49,] =0,...,p can be estimated using the in-depth
data.

Note the assumption, i.e., Equation 2, may not generally hold for the conditional probability of Y given X. The
idea is first to build subgroups that can be considered homogeneous in both data sets, so the assumption holds.
For instance, some crucial covariates like occupant age or traffic domain may affect the distribution of Y and the
conditional distribution of Y given X. Hence, the approach is first to stratify the data for these covariates such
that the assumption holds for all subgroups. To elaborate, let Z be a covariate with outcomes z, ..., Z,,, and the
covariate Z is observed at the national level and in the in-depth study. Then, assumption Equation 2 can be
modified to

]P(YN =yilXy =x,Zy = Zk) = ]P’(Y, =yi|lX;=x;,Z, = Zk) foralli,j,k (4)

and the distribution of Yy is then given by
r q

POy =y) =) > P(i=yl¥y =x,2 = 2)P(Xx = 5,2 =2).  (5)
k=0 j=0
Stratification of conditional probabilities is only necessary in dimensions in which the distribution of the
stratification variable differs among the data sets.?
Since the data enhancement uses the distributional level only, only data stratified with respect to the variables
X and Z (in the in-depth study also for Y) is necessary, but nothing further. Thus, the involved probabilities can
be estimated using aggregated data, and no case-by-case data is required, which can be a potential benefit in
terms of privacy constraints.

I1l. APPLICATION

As an application to the methodology, an example is discussed in detail, emphasising the importance of
covariates to build homogeneous subgroups is illustrated.

At the beginning of the new millennium, the European Union (EU) instigated projects to reduce road traffic
fatalities by 50 % within a decade [10]. However, even though the programme was renewed in 2010 for another
50% reduction in 10 years, an influential publication by [11] shifted the focus from road traffic death to the
severely injured, i.e., MAIS3+ injured [7].

The national statistics do not code injury severity using the AlS-scale. Still, the injury severity documented by
police officers is based on treatment location, duration, and survival (henceforth denoted as P-scale, see Section
[l (The P-Scale)) and does not provide enough detail to answer questions about severely injured persons, i.e., the
MAIS3+ injured. The approach mapping of conditional probabilities is used to enhance the national crash data for
drivers of passenger vehicles with information on injury severity, focusing on severely injured persons. Note that
the evaluation is for drivers of motor vehicles only, as the national crash data does not provide seating position
information for other vehicle occupants.

As an application of the method, timelines of crashes are investigated: The influence of the vehicle model year
(vmy), the occupant age, and the crash environment of the crash year on injury severity.

t Let U be some additional covariate with outcomes u;. If P(Yy = y;|Xy = xj,Zy =z, Uy = u;) =
P(Y; = yilX; = x,,Z;, = 2, Uy = w) forall i,j,k,l, and P(Uy = Uj|Xy =x;,Zy = z) = P(U; = w|X; =
xj,Z; = zy) forall j, k, I, then P(Yy = ;| Xy = x5, Zy = z) = P(Y; = yi|X; = x;,Z;, = z,,) forall i,j, k.
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Data Sets

National Data Set (DESTATIS)

The DESTATIS data set is the pool of all police-reported traffic crashes in all 16 German states. However, for
data protection reasons, only data subsets or partial, i.e., resampled data sets with aggregated and
pseudonymised variables, are available for independent research. To circumvent this limitation, the data subset
used in this investigation consisted of multidimensional marginal distributions of user-defined variables (see
Section Il (Homogeneous Subgroups/Cut-off Points)) spanning the crash years 2010 to 2020 and focusing on the
drivers of passenger cars.

In total, this data set contains information on approximately 4 million drivers.

In-depth Sample (GIDAS)

The GIDAS data set is a random sample of crashes with an injured party in two of Germany’s metropolitan
areas: Greater Dresden and Greater Hanover. Note that the metropolitan areas include the cities and the
surrounding rural regions. The split between city areas and the rural regions was chosen to represent the split in
Germany. The implemented on-spot, 50 % sampling is done in 6 h on/off shifts, alternating weekly, by a single
team in each location. After completing a case, the most recent crash is addressed (first-in, last-out) until all
crashes are sampled or the end of the shift is reached. Overall, this leads to a biased 30% sample of crashes
compared to DESTATIS [4][12].

The GIDAS sample is a non-identifiable sub-sample of the DESTATIS data set. The GIDAS data set from July 2021
comprises crashes between 2000-2020. For this analysis, the GIDAS sampling period is oriented on the
DESTATIS data set; thus, only crashes between 2010-2020 are used. This subset contains information on about
20,000 crashes, of which about 15,500 are passenger vehicle crashes with roughly 30,000 occupants.

GIDAS variables beyond variables encoded in DESTATIS were used only for the injury severity evaluation. Note
that this data set also contains information on passengers, specifically front-row passengers.

Injury Coding in the Data Sets

The P-Scale (injury severity documented by police officers)

In the DESTATIS data set, injury severity is categorised—by the police—into four levels: uninjured, slightly
injured, severely injured, and fatal; these four levels of injury are denoted henceforth as {PO,P1,P2,P3},
respectively.

Uninjured is defined as no self-reported injuries and no need for medical assistance at the accident scene.
Anybody who is either self-reporting an injury or is treated for a crash-induced medical condition is coded as at
least slightly injured. To be coded as severely injured, the patient must be hospitalised for crash-related injuries.
By international agreement, the fatal category is adjusted one month after the incident to include all crash-related
fatalities within 30 days of the accident [13][7, Annex IV]. Thus, the P-scale is based only on treatment location,
duration, and survival and not on injury severity evaluated by police officers. Consequently, this fact makes the
P-scale more robust to misclassification than other policy-reported injury severity scales, such as the US KABCO
scale and its related problems [14].

The GIDAS data set also includes the four-level police-reported injury severity.

S-Scale (injury severity using AlS-coding)

GIDAS also includes an AIS [15-16] coding of every individual injury [4]. In a previous project, all GIDAS injury
information was reevaluated and recoded to the current AIS2015 [17-18]. The AIS assesses the severity of
individual injuries; these injury severities have to be aggregated to the patient level. For this injury severity
aggregation, the MAIS of a patient and injury severity score (ISS) [19-20] are frequently employed. Therefore, an
injury severity categorization using the well-established cut-off points of the AlS-based ISS is chosen for the
evaluation and is denoted S-scale. At the cut-off points, the ISS gives a reasonable ordering; thus, this injury
grouping can also be characterised as a scaling. It contains four levels of injury severity with the following groups:

SO for uninjured (ISS < 3),

S1 for light and moderate injuries (ISS € [4,8]),

S2 for severe and life-threatening injuries with a high probability of survival (1SS € [9,15])

S3 for life-threatening injuries and fatalities (1SS = 16)
Groups S2 and S3 are motivated by the established cut-offs of ISS> 9 and ISS > 16 [21-22] for severe and
multiple injuries, respectively. Furthermore, the reliance on self-reporting in data sets such as GIDAS and
DESTATIS for slight injuries, i.e., AlS1 injuries, results in an under-reporting of these injuries [23] and hinders

959



IRC-24-125 IRCOBI conference 2024

differentiation between the MAISO and MAIS1 injured [24][4]. Therefore, both injury severity levels were used to
represent SO.

To harmonise crash research, the European Commission issued a policy statement on road safety in which
serious injuries are defined as those with a MAIS3 or higher, which approximately corresponds to ISS = 9. Note
that S € {S2,53} refers to the European Commission’s definition of serious injuries, i.e., MAIS3+. Furthermore,
MAIS2+ can be expressed as S € {51,52,5S3}, and MAIS4+ is equivalent to S € {S3}.

Homogeneous Subgroups/Cut-off Points

For mapping of conditional probabilities to work, it is necessary to classify the data into subgroups
homogeneous with respect to the conditional probabilities across data sets. Note that the subgroups have to be
defined identically for both data sets, further limiting possible cut-off points. Therefore, the pseudo-continuous
data used in the analysis were categorised by cut-off points subject to objectively logical constraints, privacy
constraints, and sub-sample size requirements.

Occupant Age

The occupant age is categorised into four groups: 18-44, 45-46, 65-74, and 75+ years of age (yoa). Since the
focus is on drivers and the legal driving age in Germany is 18 or older, any group of occupants aged 17 or younger
is not considered. Furthermore, the adult population (18-64 yoa)[25] is subcategorised into a young adult group
(18-44 yoa)[26] and an older adult group (45-64 yoa).

The retiree group—starting at 65 yoa—is split at 75 yoa to consider the increase of fragility and frailty with age
[27]. A stratification of the retiree group with finer granularity, i.e., into 5yoa blocks, as suggested by [28],
resulted in sample size problems.

Vehicle Model Year

Vehicle model year (vmy) is widely used as a proxy for crashworthiness [29]. Due to the unavailability of vmy in
the data sets, the year of the first passenger car registration is used as a substitute. Furthermore, the year of first
registration of the passenger car is only available for vehicles registered in Germany, about 95% of the sampled
cars.

The current evaluation considers six categories: before 1980, 1980-1997, 1998-2001, 2002-2005, 2006-2011,
and 2012-2020. Since the data set DESTATIS covers the crash years 2010-2020, the group before 1980 contains
vintage vehicles only and is not investigated in this analysis. Table Al gives the shares of each vehicle group for
each period.

The cut-off points are motivated by the following arguments [30]:

1997/1998 Introduction of European New Car Assessment Programme (Euro NCAP) offset deformable
Barrier (ODB) Test at 64 km/h rating [31].

2001/2002 compliance of new vehicle designs to Euro NCAP ODB.

2005/2006 compliance of all new vehicles to Euro NCAP ODB.

2011/2012 introduction of the Euro NCAP rigid pole side crash test [32].

Traffic Domains

Within the operating range of the restraint systems, motor vehicles provide very good protection to belted
occupants. Furthermore, the injuries sustained despite this protection are overwhelmingly a result of blunt force
trauma. The injury mechanism changes once the crash energy is above the design limit, i.e., the crumple zone
and the forward excursion are used up.

Because of the lack of crash reconstruction data in the DESTATIS database, the speed limit at the crash site is
used as a proxy for crash severity [33]. We found the speed limit at which the injury mechanism changes in a
statistically significant way to be between 80 and 90 km/h, i.e., occurrence of sharp and penetrating traumata in
a significant number of cases. Therefore, traffic domains are stratified by the speed limit (SL): SL <80 km/h and
SL =90 km/h or Autobahn.

The change of injury mechanism has to be considered when assessing the percentage of drivers hospitalised
for crash related injuries while MAIS3+ injured and surviving (see Section lll (Mapping)).

Crash Year

The crash sample at hand encompasses crash years 2010 to 2020. The primary focus of our analysis is on the
most recent vehicles, i.e., those with a market introduction in 2012 or later. While the first two crash years contain
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crashes before the market introduction of 2012 model year vehicles, the latter years have an increasing number
of these newer cars (see the last column of Table Al).

The crash year was controlled to take care of changes in the crash environment, i.e., a change in injury severity
of a given accident situation over time, such as progressively more restrictive speed limits and the installation of
further crash barriers, but also weight increases in the crash opponents. Though these effects are minor year-to-
year, they could be significant over the decade under investigation.

A three-year moving average was chosen to smooth the data, a trade-off between sample size and selection
bias. When re-combining the crashes for information on the 2012-2020 crash years, the distributions are
averaged across the three-year moving averages so that each crash year contributes equally.

Mapping of DESTATIS P-Coding to the S-Scale

The Link between P- and S-Scale

The DESTATIS data set does not contain any injury severity coding in S-scale or MAIS information. Hence,
mapping of conditional probabilities supplements DESTATIS with injury severity coding in the S-scale. The variable
P refers to the injury distribution in the P-scale, and the variable S refers to the S-scale injury distribution. Both
variables have four possible outcomes. We have denoted the outcomes P0,P1,P2,P3 and 0,1,2,3, respectively.
Additionally, let P(P = Pj) = x; and P(S = Sj) = y; for j = 0,...,3. In the DESTATIS data set, the probabilities
Xg, X1, X2,and x3 were given, and we used the mapping of conditional probabilities approach to determine the
probabilities yq, y1, ¥2,and y3 for the DESTATIS data set.

We follow [24] and do not distinguish between PO and P1. The reason for this is twofold. First, the focus of this
application is on severely injured persons, which are encoded primarily by P2 or P3. Second, [24] argue that the
relying on self-reporting for slight injuries hinders a differentiation between the MAISO and MAIS1 injured.
Consequently, the coding of PO and P1 is not considered trustworthy. Hence, the variable P is reduced to 3
outcomes, and we have denoted its outcomes as PO 4+ P1,P2,and P3. Thus, for the variables S and P, we got
4x3 =12 conditional probabilities: (S = Si|P = P0+ P1),P(S =Si|P = P2),IP(§ =Si|P =P3),i =
0,1,2,3. These conditional probabilities can be estimated using the GIDAS data set. Before doing so, note the
constraint Y3 P (S =Si|P = w) = 1,w € {PO + P1,P2,P3} reduced the unconstrained parameters to 9 =
(4 — 1) x 3. Additionally, some conditional probabilities did not need to be computed since they can be set to
zero. To elaborate, we set IP(S > S1|P = PO + P1) = 0 since almost all AIS2 injuries would warrant a hospital
stay, at least in Germany. Moreover, since the probability of dying from an AIS2 injury is negligible, i.e., a coding
error in either S or P is much more likely than the patient dying from one or two AIS2 injuries, we set
P(S <S1|P =P3) =0.

Overall, we obtained the following

P(S =S0|P =P0+P1) =1, P(S = SO0|P = P2) = a,, P(S =S0|P =P3) =0

P(S =S1|P =P0+P1) =0, P(S =S1|P =P2) = a4, P(S =S1|P =P3) =0,

P(S =S2|P =P0+P1) =0, P(S = S2|P = P2) = a,, P(S =S2|P=P3)=1-y,

P(S =S3|P =P0+P1) =0, P(S = S3|P = P2) = a3, P(S =S3|P =P3) =,
wherea; =1 —a, — a; — @y, @y, a1, Ay, and y € [0,1].

The mapping of conditional probabilities approach transfers these conditional probabilities from GIDAS to
DESTATIS. In the context of this application, the population level refers to drivers of passenger vehicles. Recall
that the underlying assumption is that these conditional probabilities coincide. Most likely, this assumption does
not hold for the population level but should hold for the subgroups; see the discussion of Equation 2 for details.

The a parameters give the shares of SO to S3 for survivors of a traffic crash who were hospitalised for crash
related causes. The parameter y links fatality to injury severity, i.e., y provides the share of the S2 and S3 injured
for the non-survivors of a traffic crash. As a pure injury metric, technical crash severity should not affect y. Since
fragility affects the survival probability, y is affected by age. The injury mechanism and the medical treatment
policy of traffic crashes affect the a parameters. Since both DESTATIS and GIDAS are German data sets, the
medical treatment policy for traffic crashes can be seen as similar. If there is no intrusion into the occupant
compartment, the injury mechanism of traffic crashes is mainly blunt force trauma. Frailty, fragility, and medical
treatment policy differences in occupant age make a age-dependent. Thus, to take into account these
dependencies and differences in the age distribution between DESTATIS and GIDAS, the parameters a and y are
stratified by age.

Additionally, the a parameters are stratified into two groups by the speed limit (SL) at the crash location. These
two groups can be seen as a proxy for the probability of significant intrusion into the vehicle’s passenger
compartment. The vehicle model year affects the stiffness and restraint system, affecting the likelihood of
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intrusion and the injury mechanism. As seen in Table Al, the vehicle model year in traffic crashes changes relatively
rapidly. If the @ and y parameters were not stratified by vehicle model year, this temporal instability could be
transferred to these parameters, see [9] for a discussion about the issues of temporal unstable parameters.
Considering the stratifications mentioned above, the parameters a and y are temporally stable from 2010 to
2020 since the crash year is statistically insignificant, see Appendix (Temporal stability of the o parameter).
Below, we list such subgroups for each parameter.
a;: age of occupant [yoa] € {18 — 44,45 — 64,65 — 74,75+} yoaq,
speed limit (SL) at crash location [km/h]: SL € {5 — 80,904} km/h,
vehicle model year (vmy) € {1980 — 1997,1998 — 2001, 2002 — 2005,2006 — 2011,2012 — 2020}.
y: age of occupant [yoa] € {18 — 44,45 — 64,65 — 74,75+} yoa.
Note that, as stated in Section I, stratification of the conditional probabilities is necessary only in dimensions in
which the distribution of the stratification variable differs among the data sets.
Hence, for each subgroup, given the parameters ;, i € {0,1,2} and y the P-scale can be mapped to the S-scale.
This defines the following mapping (on-subgroup level)
S(x): {P0: x,P1: x1,P2: x5,P3: x3} = {S0:¥,,51: ¥1,52: ¥,,53: ¥3},

So:yo = Xp + X1 + ApXyp,

~ _ Sl:yl = a’le,

S(x) = S2:y, =ayx; + (1 —y)xs, (6)
S3iys =1 —ay—a; — az)x, +Yx3 = azxy + yxs3.

Estimation of the a;, and Yy Parameters

The parameters «;,i € {1,2,3}, and y need to be estimated for each subgroup using the in-depth data set
GIDAS. For each a; parameter, there are 4 X 2 X 5 = 40 subgroups ([age of occupant] + [speed limit] + [vehicle
model year]). A logistic regression is used to address the resulting sample size problems. To elaborate, let 1 be

the indicator function. The following logistic model is used
1

1+exp (— (Bo + B, yoa + B, yoaZ + B31(SL € {90+}) + Z?:l Bita 1(vmy € vmyi)))

That means the occupant’s age is used numerically (as a polynomial of order 2 to take the drastically increasing
fragility and frailty of older people into account) [27]. In contrast, the speed limit at the crash location and vehicle
model year are used categorically in a one-hot encoding. Thus, the number of parameters for each «; is reduced
to 9.

The parameter y is estimated model-free. Since GIDAS contains information on the driver and all passengers,
all parameters are estimated in GIDAS using the information on all front-row occupants. Hence, it is assumed that
the injury mechanism is similar for drivers and other front-row occupants. The y parameters are conditional
probabilities and can be estimated by relative frequencies in the GIDAS data set. Relative frequencies are also
consistent estimators in the independent and identically distributed (i.i.d.) setting [34]. Furthermore, bootstrap-
based statistical inference for these parameters and the logistic regression can be obtained [35-36].

The mapping (Equation 6) applied to the DESTATIS data set has as inputs the injury distribution in levels
{P0,P1,P2,P3}, which are determined using the DESTATIS data set. We treat the data set DESTATIS as a random
i.i.d. sample for each crash year. Thus, the relative frequencies of {P0,P1,P2,P3} are considered estimates of the
unknown injury severity risk. Therefore, the obtained relative frequencies in the S-scale are affected by the
statistical uncertainty of both data sets. The statistical inference is obtained by a joint bootstrap-based inference
of both data sets using an i.i.d. resampling scheme to consider this uncertainty in our statistical analysis. The
obtained 95 %-confidence intervals are based on B = 10 000 bootstrap repetitions.

Thus, the evaluation is based on the following assumptions:

1. GIDAS is a subsample of DESTATIS, and both data sets coincide in encoding practice for variables
present in both data sets, especially P-scale coding, vehicle model year, occupant age, and the speed
limit at the crash location.

2. The conditional probabilities of the S-scale given P-scale coincide in both data sets for the clusters
defined by vehicle model year, occupant age, and the speed limit at the crash location.

3. The clusters themself are defined homogeneously, i.e., the frequency distributions in both data sets
coincide, or the conditional probabilities of the 6S-scale given P-scale are homogenous within each
cluster.

4. Alogistic model describes the conditional probability of the S-scale given P2 across the defined clusters.

a; =
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IV. RESULTS

The estimated «;,i = 0,1,2,3, and y-parameters—stratified by age group and vehicle model year—calculated
from the GIDAS data set are given in Table Alll in the Appendix.

Timeline Trends on the S-Scale

The DESTATIS data subset contained crashes from the years 2010-2020. Though for some results, the data set
has been cropped to 2012-2020 as the primary focus was on the current traffic situation of modern vehicles, i.e.,
those with a vehicle model year 2012-2020.

Crash Years

The S-scale injury severity distribution for each group of the three-year moving average and the aggregated
injury severity information for crash years 2012-2020 are given in Table All. This information is visualised in Figure
A6 in Appendix (Injury Severity by crash-year and age group). All SO — S1 and S1 — S2 transitions between the
crash years are statistically significant.

The tabulation of the S-scale trends for the crash year groups stratified by age groups is given in Table AlV and
Figure A7 in Appendix (Injury Severity by crash-year and age group).

Age Groups

The shift in injury severity with an increase in occupant age—while focusing on crash years 2012-2020
(weighted) and vehicle model years 2012-2020—is visualised in Figure A3.

At the S3 and S2 levels, the relative injury severity frequencies increase with age, while at the S1 level, the
18-44 yoa and 45—-64 yoa groups are nearly indifferent, with a marked increase for the 65+ groups.

Vehicle Model Year

The reduction in the relative frequency of injury severity with newer vehicles is shown in Figure A4. The shift
in injury severity is depicted for vehicle model year groups for the crash years 2012-2020. The shift is more
substantial for lower S-scores than for higher S-scores, and all S1 — SO0 shifts are statistically significant on the
95%-level.

Age Group and Vehicle Model Year

Age group stratified relative injury frequencies in crashed vehicles from the pre-NCAP era (1980-1997 vmy)
are compared to the current fleet (2012-2020 vmy) in Figure A5.

Compared to the pre-NCAP vehicles, the injury severity situation in modern cars improved in all age groups.
There are even some shifts from S3 — S1 in the two younger age groups. Furthermore, there are some significant
injury severity shifts in the older age groups, such as the 50 % S3 reduction in the 75+ yoa group. Thus, again, the
shift is more substantial for lower S-scores than higher ones.

The more detailed plots with all the intermediate vehicle model year groups and stratification by age groups
can be found in Figure A8 in in Appendix (Injury Severity by crash-year and age group). For vehicle model year
groups [98,01], [02,05], and [06,11], there are insignificant changes for all age groups in both directions
between S1 and S2 and S2 and S3. The injury severity reduction is relatively more substantial in the younger age
groups on all injury severity levels. In the two older age groups, there is only a significant change in §3 — S2 for
vehicle groups [80,97] — [98,01].

V. DISCUSSION

MAIS3+ Mapping to the National Level

Despite the police not measuring MAIS3+ in their data, distributions of their P-scale of crash severity can be
used to compute distribution information on MAIS3+ (S2) injury severity. The method mapping of conditional
probabilities used the GIDAS data set as the source for this information, as all those accidents are coded using P-
and S-scales simultaneously.

Application to Timelines

The obvious application of new injury severity assessment in crash data is timelines: injury severity over crash
year, vehicle model year, or occupant age.
Modern vehicles are safer than older ones; this result is visualised in Figure A4. Thus, with the increase of more
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modern vehicles on the road (see Table Al), the relative frequency of MAIS3+ injuries is expected to decrease.
Furthermore, not only are S2 and S2+ decreasing with vehicle model year, but so are S1, S1+, and S3.

When comparing the real-world crash performance of pre-NCAP vehicles to post-NCAP vehicles, some
significant injury severity shifts become apparent (Figure A5). For the most severe injury levels (52 and S3), more
than half of the injuries are shifted down by one severity level, i.e., $3->52 and $2->S51. This shift also holds for
the S1 level, except for the oldest demographic. Furthermore, there are small but statistically significant injury
severity shifts from $3->51 in the two younger age groups. The proportion of the change in injury severity is most
prominent for the youngest demographic and decreases significantly with occupant age.

A more detailed look at the safety improvements stratified by age group is shown in Figure A8. Major shifts
from $3->52 are present only for vmy [80,97]-[97,01]. Afterwards, only minor (most even statistically
insignificant) changes are visible. Major shifts from S2->51 are seen in all age groups for vmy [80,97]->[97,01] and
[06,11]->[12,20]. Again, the technological advancements benefitted the younger demographic more than the
older demographic; this is especially obvious at the S1+ level but holds for all injury severity levels.

Thus, the most potential for injury severity reduction can be found in the oldest demographic. However, care
must be taken not to reduce the injury severity for the old age groups at the expense of the younger age groups
[37].

Vehicle Model Years 2012-2020, Only

The timelines show that the latest vehicle models provide the best occupant protection, independent of the
occupant’s age (see Figure A4 and Figure A8). Therefore, this group (2012-2020 vmy) was chosen for further
investigation.

The injury severity level sustained by a vehicle occupant is age-dependent: The older the occupants, the more
severe the injury severity level; the increase is most pronounced for the two most senior age groups, see Figure
A3. This age-dependency can be directly attributed to increased fragility and frailty with age [27]. Likewise, this
age-dependency of the injury severity level also holds when focusing on the vehicle model years 2012-2020 only
(see Figure A5).

Within the crash years 2012-2020, occupants in vehicles with a vehicle model years 2012-2020 fare worse the
more current the crash year, i.e., the cash environment is becoming more and more aggressive for the modern
cars. This deterioration in crash performance holds for the injury severity levels S1, $2, and S3 but also for P2
and P3, whose relative frequencies are increasing (see Table All and Figure A6). This trend also holds when this
population is stratified by age group (see Table AV).

As crash opponents, the increased number of in newer vehicles (see Table Al) seems to increase injury severity.
Even so, modern vehicles have a good crash performance as long as they crash against older vehicles (see Table
All and Figure A6). Occupants in newer vehicles do not seem to profit as much from increased safety when
crashing into more recent vehicles.

To investigate the reason for this more aggressive crash environment is out of scope of this paper but clearly
an avenue for further research. One of the reasons could be the ever-increasing vehicle mass [38-39] and the
consecutive ever-stiffer front ends due to the crash-test focus on self-protection, i.e., test speeds independent of
vehicle mass [30]. Another reason could be an increase in aggressive driving behaviour [40].

Limitations
DESTATIS Sampling Limits

The DESTATIS database consists of police-recorded crashes only. Thus, there are some property damage only
crashes missing. In addition, minor injuries, e.g., hematoma or superficial lacerations, will not be reported for
these cases, as there is an under-reporting at the lower end of the injury severity spectrum.

All the variables in the DESTATIS database are recorded by the police officers. However, some information of
little interest to the police investigation, e.g., seat belt status and seating position within the vehicle other than
the driver, have quality issues or are not documented at all, e.g., height and weight of the occupant. Furthermore,
some pieces of information on the crash are the result of the crash reconstruction, e.g., the crash sequence, which
is neither done for every case nor are the results available at the time the police officer has to file the crash
information with the statistics office (30 days post-crash). Therefore, all these variables with quality issues cannot
be used in a re-coding process like the one described in this paper.

The current analysis used pre-computed, multi-dimensional marginal distributions computed with access to
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the 100 % DESTATIS sample. Increases in dimensionality are limited by data protection requirements, i.e., the
ability to re-identify individual crashes.
GIDAS Sample Size Limits

The conditional probabilities, i.e., the a;- and y-parameters, are solely based on the GIDAS data set. Note that
mapping these conditional probabilities to the DESTATIS data set rests on assumptions. An increase in the
GIDAS sample size would significantly reduce the confidence intervals of the translation parameters (see Table
Alll). Additionally, this would allow us to estimate the parameters model-free.

VI. CONCLUSION

Instead of projecting a small, in-depth sample to a larger level, a novel method was presented to map the
marginal distributions of a large data set to a finer granularity coding using an in-depth data source to estimate
required conditional distributions. Using marginal distributions instead of the entire data set addresses data
protection concerns.

As an application of the method, the German national motor vehicle crash database (DESTATIS) was enhanced
by distribution information on the MAIS2+, MAIS3+, and MAIS4+ injury severity levels from GIDAS.

VII. REFERENCES

[1] European Commission. (2019) EU Road Safety Policy Framework 2021-2030 — Next Steps towards 'Vision
Zero'.

[2] Zhang, F., Chen, C-L. (2013) National Highway Traffic Safety Administration (NHTSA), NASS-CDS: Sample
Design and Weights (DOT HS 811 807), Washington, D.C.

[3] Hansen, M H., Hurwitz, W N., Madow, W G. (1953) Sample Survey Methods and Theory - Volume | (Methods
and Applications), John Wiley & Sons, New York.

[4] Otte, D., Krettek, C., Brunner, H., Zwipp, H. (2003) Scientific Approach and Methodology of a New In-depth
Investigation Study in Germany so called GIDAS. Enhanced Safety Vehicles (ESV), 2003, Nagano, Japan.

[5] Hautzinger, H., Pfeiffer, M., Schmidt, J. (2006) Bundesanstalt fir StraBenwesen (BASt), F59, Hochrechnung
von Daten aus Erhebungen am Unfallort [Data Expansion of Accident Data from In-depth Accident Surveys],
Bergisch Gladbach, Germany.

[6] Kreiss, J-P., Feng, G. et al. (2015) Extrapolation of GIDAS Accident Data to Europe, Enhanced Safety of
Vehicles (ESV), 2015, Gothenburg, Sweden.

[7] European Commission. (2013) On the implementation of objective 6 of the European Commission's policy
orientations on road safety 2011-2020 — First milestone towards an injury strategy, p.4.1. SWD(2013) 94 final.

[8] Behnood, A., Mannering, F. (2015) The temporal stability of factors affecting driver-injury severities in single-
vehicle crashes: Some empirical evidence. Analytic Methods in Accident Research, 8(1): p.7-32.

[9] Mannering, F. (2018) Temporal Instability and the Analysis of Highway Accident Data. Analytic Methods in
Accident Research, 17(1): p.1-13.

[10] European Commission. (2001) European transport policy for 2010: Time to decide}. COM(2001) 370 final.

[11] Lefering, R. (2009), Bundesanstalt flir StraBenwesen (BASt), M200, Entwicklung der Anzahl
Schwerstverletzter infolge von StraRenverkehrsunfillen in Deutschland [Development of the Number of Persons
Critically Injured as a Result of Road Traffic Accidents in Germany], Bergisch Gladbach, Germany.

[12] Hautzinger, H., Pfeiffer, M., Schmidt, J. (2004) Expansion of GIDAS Sample Data to the Regional Level.
Expert Symposium on Accident Research (ESAR), 2004, Hanover, Germany,

[13] Statistisches Bundesamt. (2022) DESTATIS, Sonderauswertung Straflenverkehrsunfille 2010-2020:
Beteiligte Pkw-Fahrer an Unfdllen mit Personenschaden nach Erstzulassungsjahr des Pkws, Alter und
Verletzungsschwere des Fahrers und Geschwindigkeitsbegrenzung am Unfallort [Special Evaluation of Road
Traffic Crashes 2010-2020: Vehicle drivers involved in crashes with injuries stratified by year of vehicle
registration, driver age and injury severity, and speed limit at the crash site], Wiesbaden, Germany.

[14] Farmer, CM. (2003) Reliability of Police-Reported Information for Determining Crash and Injury Severity.
Traffic Injury Prevention, 4(1): pp. 38—44.

[15] Gennarelli, T A. (1998) The Abbreviated Injury Scale 1990 - Update 98. Association for the Advancement of
Automotive Medicine (AAAM), Barrington, IL.

[16] Gennarelli, T A., Wodzin, E. (2008) The Abbreviated Injury Scale 2005 - Update 2008. Association for the

965



IRC-24-125 IRCOBI conference 2024

Advancement of Automotive Medicine (AAAM), Barrington, IL.

[17] Gillich, P. (2015) The Abbreviated Injury Scale 2015 Revision. Association for the Advancement of
Automotive Medicine (AAAM), Barrington, IL.

[18] Unger, T., Liers, H., Schuster, R., Kleber, C. (2019) Verband der Automobilindustrie (VDA), Entwicklung der
Verletzungsschwere bei Verkehrsunfallen in Deutschland im Kontext verschiedener AlS-Revisionen [The Influence
of AlS-Revisions on the Temporal Shift in Injury Severity in Road Traffic Crashes in Germany.] (FAT-Schriftenreihe
327), Berlin, Germany.

[19] Baker, S P., O'Neill, B. (1976) The Injury Severity Score: An Update. The Journal of Trauma, 16(11): p.

882-885.

[20] Baker, S P., O'Neill, B., Haddon, W., Long, W. (1974) The Injury Severity Score: A Method for Describing
Patients with Multiple Injuries and Evaluating Emergency Care. The Journal of Trauma, 14(3): p.187-196.

[21] DGU Guideline Committee of the German Registered Society for Trauma Surgery. (2001) Recommended
Guidelines for Diagnostics and Therapy in Trauma Surgery. European Journal of Trauma, 27(3): p.137-150.

[22] Pape, H-C., Zelle, B. et al (2006) Evaluation and Outcome of Patients after Polytrauma — Can Patients be
Recruited for Long-term Follow-up? Injury, 37(12): p.1197-1203.

[23] Andricevic, N., Junge, M., Krampe, J. (2018) Injury risk functions for frontal oblique collisions. Traffic Injury
Prevention, 19(5): p.518-522.

[24] Krampe, J., Junge, M. (2021) Deriving functional safety (ISO 26262) S-parameters for vulnerable road users
from national crash data. Accident Analysis & Prevention, 150(1): p.1-9.

[25] Morris, A., Welsh, R., Frampton, R., Charlton, J., Fildes, B. (2002) An Overview of Requirements for the
Crash Protection of Older Drivers. Annals of Advances in Automotive Medicine/Annual Scientific Conference, 46:
p.1-16.

[26] Bahouth, G., Digges, K., Schulman, C. (2012) Influence of injury risk thresholds on the performance of an
algorithm to predict crashes with serious injuries. Annals of Advances in Automotive Medicine/Annual Scientific
Conference, 56: p.223-230.

[27] Kent, R., Trowbridge, M., Lopez-Valdes, F J., Heredero Ordoyo, R., Segui-Gomez, M. (2009) How Many
People Are Injured and Killed as a Result of Aging? Frailty, Fragility, and the Elderly Risk-Exposure Trade-off
Assessed via a Risk Saturation Model. Annals of Advances in Automotive Medicine/Annual Scientific Conference,
53: p.41-50.

[28] Collard, R M., Boter, H., Schoevers, R A., Oude Voshaar, R C. (2012) Prevalence of Frailty in Community-
Dwelling Older Persons: A Systematic Review. Journal of the American Geriatric Society, 60(8): p.1487-1492.

[29] Ryb, G E., Dischinger, P C., McGwin, G., Griffin, R L (2011) Crash-related Mortality and Model year: Are
Newer Vehicles Safer? Annals of Advances in Automotive Medicine/Annual Scientific Conference, 55: p.113—-121.

[30] van Ratingen, M., Williams, A. et al. (2016) The European New Car Assessment Programme: A Historical
Review. Chinese Journal of Traumatology, 19(2): p. 63—69.

[31] Euro NCAP. (2018) European New Car Assessment Programme, Offset Deformable Barrier Frontal Impact
Testing Protocol, Version 7.1.3., Antwerp, Belgium.

[32] Euro NCAP. (2019) European New Car Assessment Programme, Oblique Pole Side Impact Testing Protocol,
Version 7.1.1., Antwerp, Belgium.

[33] Krampe, J., Junge, M. (2020) Injury Severity for Hazard & Risk Analyses: Calculation of

ISO 26262 S-parameter Values from Real-World Crash Data. Accident Analysis & Prevention 136(1): p.1-8.

[34] Mood, A M., Grayhbill, F A., Boes, D C. (1974) Introduction to the Theory of Statistics, Chpt. VI.3. McGraw-
Hill, New York.

[35] Efron, B., Tibshirani, R J. (1993) An Introduction to the Bootstrap, Chpts. 5, 21. Chapman & Hall/CRC, Boca
Raton.

[36] Davison, A C., Hinkley, D V. (1997) Bootstrap Methods and Their Application, Sec. 7.2. Cambridge University
Press, Cambridge, U.K.

[37] Krampe, J., Junge, M. (2019) Population-based assessment of a vehicle fleet with seat belts providing lower
shoulder belt forces than today. Traffic Injury Prevention, 20(3): p.320-324.

[38] Kahane, C J. (2003) National Highway Traffic Safety Administration (NHTSA), Vehicle Weight, Fatality Risk
and Crash Compatibility of Model Year 1991-99 — Passenger Cars and Light Trucks (DOT HS 809 662), Washington,
D.C.

966



IRC-24-125 IRCOBI conference 2024

[39] Highway Loss Data Institute (HLDI). (2011) Injury Odds and Vehicle Weight - Comparison of Hybrids and
Conventional Counterparts}. Highway Loss Data Institute Bulletin. 28(10): p.1-10.

[40] Islam, M., Mannering, F. (2020) A temporal analysis of driver-injury severities in crashes involving
aggressive and non-aggressive driving. Analytic Methods in Accident Research, 27: p.1-16.

[41] DESTATIS (2018) Statistisches Bundesamt (DESTATIS), Fachserie 8 Reihe 7: Verkehr — Verkehrsunfille
[traffic — crashes], pp. 87, 99, Wiesbaden, Germany.

[42] Institut fUr angewandte Sozialwissenschaft (infas). (2017) Bundesministerium fir Verkehr und digitale
Infrastruktur, Referat G 13, Mobilitat in Deutschland — Tabellarische Grundauswertung [Mobility in Germany —
Basic Tables], Tab. B A15, Berlin, Germany.

[43] IRTAD. (2014) OECD/ITF, Road Safety - Annual Report 2014, Tab 6, Paris, France.

967



IRCOBI conference 2024

IRC-24-125
VIIl. APPENDIX
Tables
Crash year year of first vehicle registration
NA -79] [80,97] [98,01] [02,05] [06,11] [12,20] n
2010 0.055 0.001 0.213 0.218 0.220 0.294 0.000 354919
2011 0.057 0.001 0.181 0.206 0.212 0.344 0.000 370632
2012 0.056 0.001 0.150 0.193 0.205 0.362 0.034 367055
2013 0.058 0.001 0.119 0.175 0.198 0.351 0.099 359808
2014 0.096 0.001 0.092 0.152 0.181 0.325 0.153 371095
2015 0.057 0.001 0.077 0.142 0.179 0.326 0.218 378156
2016 0.058 0.001 0.063 0.125 0.168 0.313 0.273 381354
2017 0.057 0.001 0.050 0.108 0.154 0.300 0.330 372144
2018 0.055 0.001 0.039 0.091 0.140 0.285 0.390 369050
2019 0.055 0.001 0.031 0.075 0.126 0.271 0.441 357327
2020 0.073 0.001 0.026 0.063 0.116 0.252 0.470 286079
n 243453 2550 379506 563378 688856 1239831 850045 3967619
Table Al

Shares of vehicle to market introduction groups for several time periods. (NA: not available).

SO  97.43(97.20,97.66)

S1
S2
S3
S1+
S2+
P2
P3

SO  97.00(96.74,97.27)

2012-2014

1.66(1.43,1.89)
0.49(0.35,0.64)
0.42(0.32,0.54)
2.57(2.34,2.80)
0.91(0.74,1.09)
3.99(3.91,4.08)
0.18(0.16,0.20)

2016-2018

crash year group

2013-2015

97.36(97.12,97.59)

1.70(1.47,1.94)
0.50(0.36,0.66)
0.43(0.33,0.55)
2.64(2.41,2.88)
0.94(0.76,1.12)
4.10(4.04,4.17)
0.18(0.17,0.20)

2014-2016

97.24(97.00,97.48)

1.78(1.54,2.02)
0.53(0.37,0.69)
0.45(0.34,0.58)
2.76(2.52,3.00)
0.98(0.80,1.17)
4.28(4.22,4.33)
0.19(0.18,0.20)

crash year group

2017-2019

2018-2020

2015-2017

97.11(96.85,97.36)

1.87(1.62,2.13)
0.55(0.39,0.73)
0.47(0.35,0.60)
2.89(2.64,3.15)
1.02(0.83,1.22)
4.50(4.45,4.55)
0.19(0.18,0.20)

96.85(96.58,97.13)

96.90(96.63,97.17)

2012-2020 (weighted)
97.13(96.88,97.38)

2.01(1.74,2.29)
0.59(0.42,0.78)
0.49(0.37,0.63)
3.10(2.83,3.37)
1.09(0.88,1.31)
4.84(4.80,4.89)
0.20(0.19,0.21)

2.04(1.76,2.32)
0.60(0.43,0.79
0.51(0.38,0.65
3.15(2.87,3.42
1.11(0.90,1.33
4.91(4.86,4.95
0.21(0.20,0.22

—_—  — — — — -~

1.86(1.61,2.11)
0.55(0.39,0.72
0.47(0.35,0.59
2.87(2.62,3.12
1.01(0.83,1.22
4.47(4.44,4.51
0.19(0.18,0.20

—_ — — — — ~—

s1 1.94(1.68,2.21)
S2 0.57(0.41,0.75)
s3 0.48(0.36,0.61)
S1+  3.00(2.73,3.26)
S2+  1.05(0.86,1.26)
P2 4.68(4.63,4.73)
P3 0.19(0.18,0.20)
Table All

S-distribution for different crash year groups, vehicle model year group 2012-2020.
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occupant age: [18,44] [45,64] [65,74] [75 +] [18,75 +]
@, 0.34(0.30,0.38) 0.29(0.25,0.34) 0.30(0.25,0.35) 0.31(0.25,0.38) 0.32(0.28,0.35)
5<L a; 0.44(0.40,0.48) 0.46(0.41,0.50) 0.44(0.39,0.49) 0.41(0.35,0.48) 0.44(0.40,0.48)
80km/h @ 015(0.12,018) 0.17(0.14,021) 0.18(0.15022) 0.19(0.14,0.24) 0.17(0.14,0.19)
vmy a; 0.07(0.05,0.09) 0.08(0.05,0.10) 0.08(0.06,0.11) 0.08(0.05,0.12) 0.07(0.05,0.09)
‘[580’97] @, 0.33(0.28,0.37) 0.27(0.22,0.33) 0.27(0.22,0.33) 0.29(0.21,0.36)  0.31(0.26,0.35)
5>L a; 0.40(0.36,0.44) 0.41(0.36,0.47) 0.40(0.34,0.45) 0.37(0.31,0.44) 0.40(0.36,0.44)
90km/h @ 0.20(0.16,024) 0.22(0.18,027) 0.23(0.18,029) 0.24(0.18,031) 0.21(0.17,0.25)
a; 0.08(0.05,0.10) 0.09(0.06,0.12) 0.09(0.06,0.13) 0.10(0.06,0.14) 0.08(0.06,0.11)
a, 0.39(0.29,0.48) 0.35(0.25,0.45) 0.35(0.25,0.45) 0.37(0.26,0.48) 0.37(0.27,0.46)
st a; 0.43(0.33,0.54) 0.44(0.34,0.55) 0.43(0.33,0.53) 0.40(0.30,0.52) 0.43(0.33,0.53)
80 ksm /h @2 0.17(0.10,024) 0.19(0.11,027) 020(0.12,029) 0.20(0.12,0.30) 0.18(0.11,0.26)
vmy a; 0.02(0.00,0.05) 0.02(0.00,0.06) 0.02(0.00,0.06) 0.02(0.00,0.06) 0.02(0.00,0.05)
F98,01] a, 0.38(0.28,0.48) 0.33(0.23,0.44) 0.33(0.22,0.44) 0.35(0.23,0.47) 0.36(0.26,0.46)
st a; 0.39(0.29,0.49) 0.40(0.30,0.51) 0.39(0.28,0.50) 0.36(0.26,0.48) 0.39(0.29,0.50)
90 kzm Jh @2 021(013,031) 024(0.14,035) 025(0.15036) 0.26(0.15,0.38) 0.23(0.14,0.33)
a; 0.02(0.00,0.05) 0.02(0.00,0.07) 0.03(0.00,0.07) 0.03(0.00,0.07) 0.02(0.00,0.06)
a, 0.37(0.30,0.44) 0.33(0.26,0.40) 0.34(0.27,0.41) 0.36(0.28,0.43) 0.35(0.29,0.42)
st a; 0.46(0.39,0.53) 0.47(0.40,0.55) 0.46(0.38,0.53) 0.43(0.35,0.51) 0.46(0.39,0.53)
80 ksm /h @2 0.11(0.07,0.16) 0.13(0.09,0.18) 0.14(0.09,0.19) 0.14(0.09,0.20) 0.12(0.08,0.17)
vmy a; 0.06(0.03,0.09) 0.07(0.04,0.11) 0.07(0.04,0.11) 0.07(0.03,0.12) 0.06(0.03,0.10)
'[502,0 5] a, 0.37(0.30,0.44) 0.32(0.25,0.40) 0.33(0.25,0.40) 0.34(0.26,0.43) 0.35(0.28,0.42)
st a; 0.42(0.34,0.49) 0.43(0.36,0.51) 0.41(0.34,0.49) 0.39(0.31,0.48) 0.42(0.35,0.49)
90 kzm /h @2 015(010,021) 0.17(0.11,024) 0.18(0.12,024) 0.18(0.12,0.26) 0.16(0.11,0.22)
a; 0.07(0.03,0.11) 0.08(0.04,0.13) 0.08(0.04,0.13) 0.08(0.04,0.14) 0.07(0.04,0.11)
a, 0.38(0.33,0.43) 0.33(0.29,0.38) 0.34(0.29,0.39) 0.36(0.29,0.42) 0.36(0.32,0.40)
st a; 0.41(0.36,0.47) 0.43(0.38,0.48) 0.41(0.36,0.46) 0.39(0.32,0.45) 0.42(0.37,0.46)
80 ksm /h @ 0.14(011,018) 0.17(0.13,020) 0.17(0.14,021) 0.18(0.13,0.23) 0.16(0.13,0.19)
vmy a; 0.06(0.04,0.09) 0.07(0.05,0.10) 0.07(0.05,0.10) 0.08(0.04,0.12) 0.07(0.05,0.09)
4[50 6.11] @, 0.37(0.31,0.42) 0.32(0.26,0.37) 0.32(0.26,0.38) 0.33(0.26,0.41) 0.35(0.30,0.40)
st a; 0.37(0.32,0.43) 0.39(0.33,0.44) 0.37(0.32,0.43) 0.35(0.28,0.42) 0.37(0.32,0.43)
90 kzm /h @ 0.19(0.15024) 0.21(017,027) 0.23(0.17,028) 0.23(0.17,0.30) 0.20(0.16,0.25)
a; 0.07(0.04,0.10) 0.08(0.05,0.12) 0.09(0.05,0.12) 0.09(0.05,0.14) 0.08(0.05,0.11)
a, 0.41(0.35,0.47) 0.37(0.31,0.43) 0.38(0.32,0.44) 0.40(0.32,0.47) 0.39(0.34,0.45)
st a; 0.43(0.37,0.49) 0.45(0.39,0.51) 0.43(0.37,0.49) 0.40(0.33,0.48) 0.43(0.37,0.49)
80 ,(Sm /h @ 0.10(0.07,014) 0.12(0.08,0.16) 0.12(0.08,0.17) 0.13(0.08,0.18) 0.11(0.08,0.15)
vmy a; 0.06(0.03,0.09) 0.07(0.04,0.10) 0.07(0.04,0.11) 0.07(0.03,0.12) 0.06(0.04,0.09)
‘[512’2 0] a, 0.41(0.35,0.47) 0.37(0.30,0.43) 0.37(0.30,0.44) 0.39(0.30,0.46) 0.39(0.33,0.45)
5>L a; 0.39(0.33,0.46) 0.40(0.34,0.47) 0.39(0.32,0.45) 0.36(0.29,0.44) 0.39(0.33,0.45)
90km/h @ 0.14(0.09,018) 0.15(011,021) 0.16(0.11,022) 0.17(0.11,023) 0.15(0.10,0.19)
az 0.06(0.04,0.10) 0.08(0.04,0.12) 0.08(0.04,0.12) 0.08(0.04,0.14) 0.07(0.04,0.11)
Yy  1.00(1.00,1.00) 0.92(0.80,1.00) 0.86(0.50,1.00) 0.78(0.45,1.00) 0.94(0.88,0.99)

Table Alll

The estimated «;, i = 0,1,2,3, and y parameters calculated using the GIDAS data set (mean, (2.5, and 97.5
percentiles in brackets)).
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age
cohort

SO
S1
S2

S3
18-44

S1+
S2+

P2
P3
SO
S1
S2

S3
45-64

S1+
S2+

P2
P3
SO
S1
S2

S3
65-74

S1+
S2+

P2
P3
SO
S1
S2

S3
75+

S1+
S2+

P2
P3

96.60(96.14,97.03

2012-2014

97.43(97.20,97.66)

1.66(1.43,1.89)
0.49(0.35,0.64)
0.42(0.32,0.54)
2.57(2.34,2.80)
0.91(0.74,1.09)
3.99(3.91,4.08

0.18(0.16,0.20

97.56(97.31,97.81

)
)
)
1.61(1.37,1.86)
0.45(0.31,0.61)
0.38(0.27,0.49)
2.44(2.19,2.69)
0.83(0.66,1.01)
3.90(3.73,4.06)
0.14(0.11,0.17)

97.42(97.16,97.67)

1.63(1.40,1.88)
0.53(0.37,0.70)
0.43(0.31,0.56)
2.58(2.33,2.84)
0.95(0.77,1.15
3.82(3.63,4.00
0.17(0.13,0.21

2.05(1.70,2.43
0.73(0.51,0.99
0.61(0.40,0.85
3.40(2.97,3.86
1.35(1.05,1.67)
4.98(4.48,5.50)
0.29(0.17,0.42)

)
)
)
)
)
)
)
)

2015-2017

97.11(96.85,97.36)

1.87(1.62,2.13)
0.55(0.39,0.73)
0.47(0.35,0.60)
2.89(2.64,3.15)
1.02(0.83,1.22)
4.50(4.45,4.55)
0.19(0.18,0.20)

97.35(97.09,97.60)

1.76(1.51,2.02)
0.50(0.35,0.67)
0.40(0.29,0.52)
2.65(2.40,2.91)
0.90(0.71,1.09)
4.26(4.16,4.36)
0.14(0.12,0.16)

97.05(96.78,97.31)

1.87(1.61,2.14)
0.60(0.42,0.79)
0.48(0.35,0.63)
2.95(2.69,3.22)
1.08(0.87,1.30)
4.38(4.26,4.49)
0.19(0.16,0.21)

96.27(95.89,96.64)

2.24(1.90,2.59)
0.80(0.56,1.07)
0.69(0.48,0.92)
3.73(3.36,4.11)
1.49(1.20,1.80)
5.42(5.13,5.72)
0.34(0.26,0.42)

)
)
)
)
95.96(95.57,96.35)
)
)
)

2018-2020

96.90(96.63,97.17)

2.01(1.74,2.29)
0.59(0.42,0.78)
0.49(0.37,0.63)
3.10(2.83,3.37)
1.09(0.88,1.31
4.84(4.80,4.89
0.20(0.19,0.21

97.14(96.87,97.41

0.53(0.37,0.71
0.43(0.31,0.56
2.86(2.59,3.13
0.96(0.77,1.17
4.59(4.50,4.68
0.15(0.14,0.17)

)
)
)
)
1.89(1.62,2.17)
)
)
)
)
)

96.88(96.60,97.16)

1.99(1.72,2.28)
0.63(0.44,0.83)
0.49(0.36,0.65)
3.12(2.84,3.40
1.13(0.91,1.36
4.65(4.55,4.76
0.18(0.16,0.20

2.42(2.06,2.80
0.87(0.61,1.16
0.74(0.52,0.99
4.04(3.65,4.43)
1.61(1.30,1.94)
5.88(5.62,6.14)
0.36(0.30,0.43)

)
)
)
)
96.29(95.95,96.64)
)
)
)

crash year group

2012-2020
(weighted)

97.13(96.88,97.38)

1.86(1.61,2.11)
0.55(0.39,0.72)
0.47(0.35,0.59)
2.87(2.62,3.12)
1.01(0.83,1.22
4.47(4.44,4.51
0.19(0.18,0.20

97.34(97.09,97.59

0.50(0.35,0.66
0.40(0.30,0.53
2.66(2.41,2.91
0.90(0.72,1.10
4.26(4.19,4.33
0.15(0.13,0.16)

)
)
)
)
1.76(1.51,2.02)
)
)
)
)
)

97.09(96.83,97.35)

1.84(1.59,2.11)
0.59(0.42,0.78)
0.47(0.35,0.62)
2.91(2.65,3.17
1.06(0.86,1.28
4.31(4.24,4.39
0.18(0.17,0.20

2.24(1.91,2.58
0.80(0.56,1.06
0.67(0.47,0.89
3.71(3.36,4.05)
1.47(1.19,1.77)
5.42(5.22,5.63)
0.32(0.27,0.37)

Table AlV

S-distribution for different time period and vehicle group [12,20] and age cohort. Note: P3 = deceased.

Figures

Fig. A2: Mapping of the P-scale to the S-scale.
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Fig. A3: Shift in injury severity (SO — S1 — S§2 — S§3) across the age groups (18—44, 45-64, 65—-74, 75+ yoa), for
vehicle model years (vmy) [12,20], and crash years 2012-2020 (weighted).

Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury
severity.

Columns represent the 10% of the crashes with the most severe injuries.
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Fig. A4: Shift in injury severity (S3 = S2 — S1 — S0) across vehicle model years (vmy) [80,97], [98,01], [02,05],
[06,11], to [12,20], for crash years 2012-2020 (weighted).

All injury severity shifts are statistically significant at the 95%-level.

Columns represent the 10% of the crashes with the most severe injuries.
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Fig. A5: Comparison of injury severity (S3 — S2 — S1 — S0) between vehicle model years (vmy) [80,97] to
[12,20], stratified by age group for (18—44, 45-64, 65—74, 75+ yoa), for crash years 2012-2020 (weighted).
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury
severity.

Columns represent the 10% of the crashes with the most severe injuries.
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Fig. A6: Shift in injury severity (S3 — S2 — S1 — S0) across the crash years (2012-2014, 2013-2015, 2014-2016,
2015-2017, 2016-2018, 2017-2019, 2018-2020), for vehicle model years (vmy) [12,20].

Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury
severity.

Columns represent the 10% of the crashes with the most severe injuries.
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Fig. A7: Shift in injury severity (S3 — S2 — S1 — 50) across the crash years (2012-2014, 2013-2015, 2014-2016,
2015-2017, 2016-2018, 2017-2019, 2018-2020), stratified by age group for (18-44, 45—64, 65-74, 75+ yoa), for
vehicle model years (vmy) [12,20].

Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury
severity.

Columns represent the 10% of the crashes with the most severe injuries.
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Fig. A8: Shift in injury severity (S3 = S2 - S1 — S0) across vehicle model years (vmy) [80,97], [98,01], [02,05],
[06,11], to [12,20], stratified by age group for (18—44, 45—-64, 65—74, 75+ yoa), for crash years 2012—-2020

(weighted).
Flow: Dark blue: statistically significant shift (95 %-level), blue: non stat. sig. shift, light blue: no change in injury
severity.

Columns represent the 10% of the crashes with the most severe injuries.

976



IRC-24-125 IRCOBI conference 2024

Temporal Stability of the a« Parameter

The crash year is included as an independent variable in the logistic regression models of Section IIl (Vehicle
Model Year) to test whether the a-parameters are temporally stable. The crash year is treated in a one-hot-
encoding fashion where the crash year 2010 is the baseline to avoid any monotonic assumption. The following
table states the p-values of the corresponding parameters in the three logistic regression models («;,i = 0,1,2).
For each a, the absolute maximum over all these coefficients can be used as a test statistic to test directly whether
all 10 coefficients are different from zero. Bootstrap is employed for p-values to take the multiple testing issue
into account. We obtain the following p-values ay: 0.57, a1: 0.38, @,: 0.62. Consequently, the logistic regression
model seems unaffected by the crash year.

Crash
Year

2011 0.22 0.43 0.38
2012 0.35 0.54 044
2013 0.30 0.23 0.13
2014 0.76 0.48 0.29
2015 0.17 0.35 0.17
2016 0.35 0.18 0.10
2017 0.32 0.12 0.67
2018 0.95 0.71 0.97
2019 0.54 0.15 0.87
2020 0.39 0.97 0.98

Table AV

p-values of the crash year coefficients in the logistic regression models for a;i = 0,1,2.

ao oy a

977



IRC-24-125 IRCOBI conference 2024
Injury Severity by Crash-Year and Age Group

Numerical Example

We simulated crash data, which mimics a national accident database and an in-depth accident study. The
national accident database contained all the accidents but a lesser degree of detail for each crash. The in-depth
accident study has a high level of detail for each accident but contains only a subset of all accidents and is biased
due to some sampling criteria.
The General Approach

We consider four traffic domains which result in four different technical crash severity exposures. Additionally,
we consider single and multi-vehicle crashes with one or more occupants in each vehicle. Injury risk functions
transfer technical crash severity into medical crash injury severity. Medical crash injury severity is measured in
two scales. One with a higher level of detail is denoted by IS and 5 levels are considered: 0,1,2,3,4. The levels are
motivated by the MAIS: 0 (MAIS0); 1 (MAIS1); 2 (MAIS2); 3 (MAIS3); 4 (MAIS4+). The other scale is P and
corresponds to a police-reported injury measure. It contains 3 levels (0,1,2) which corresponds to 2 (fatal),
1 (hospitalised for crash related causes and non-fatal), 0 otherwise. Occupants can be belted or unbelted,
corresponding to different underlying injury risk functions.
The Specifics

To elaborate, we consider n crashes. Let TR;,i = 1, ..., n be the technical crash severity for crash i. Technical
crash severity is sampled independently from the exponential distribution, where the traffic domain results in
different parameters for the exponential distribution. The four traffic domains are motivated by the speed limits
(in km/h) (0,30], (30,50], (50,80], (80,100]. The parameters of the exponential distribution are given by fitting
an exponential distribution to the Av values (in km/h) in GIDAS for that traffic domain. The memorylessness
property of the exponential distribution is used to take the sampling issue of GIDAS into account, and only Av
values greater than 20 km/h are considered for the estimation.

For the four traffic domains we compute:

(0,30]:TR; ~ exp(0.11),i =1, ...,0.15n,
(30,50]: TR; ~ exp(0.03),i =0.15n+1,...,0.7n,
(50,80]: TR; ~ exp(0.06),i = 0.7n + 1, ...,0.9n,

(80,100]: TR; ~ exp(0.05),i =09n+1,...,n.

The four traffic domains have a share of 0.15,0.55,0.2,and 0.1, respectively. Let SV C; indicate if accident i is a

single vehicle crash and we set SV C; ba Bernoulli(0.1),i = 1, ..., n, i.e., P(single vehicle crash) = 0.1, see [13].
We set the expected number of vehicles involved in a multi-vehicle crash to 2.08, see [41]. Additionally, the
number of involved vehicles is assumed to follow a Poisson distribution. Let NV(;=
number of vehicles in accidenti =1+ (1 —SVC)(Z; + 1), Z; ba Po0is(0.08), i =1,...,n. We say that the
number of occupants per vehicle follows a Poisson distribution, and the expected number of occupants per
vehicle is set to 1.4 [42]. Let OpC; = Occupants per accidenti = Z?’:f" 1+0;;0;; g Pois(0.4),j =
1,..,NVC(C;,i=1,..,n We set seat belt usage to 97 % [43] and draw this using independent Bernoulli random
variables. We say that all vehicles (and occupants) involved in a crash have the same technical crash severity. The
medical injury severity is obtained independently for each occupant. For each occupant with technical risk x and
belt status b, the medical injury severity in the IS scale is sampled according to P(IS = is|technical risk =
x,belt status = b) = p;5p(x),is = 0,1,2,3,4, where the probabilities p;s , (x) are obtained from the injury risk
functions as follows. Let

Rﬁo,ﬁl(x) = 1/ <1 + exp (_ﬁO + 10 — ,81x — (10/13)(10g(10g(x + 1) + 1))1/2))

Rg, p,(x) is a logistic risk function, and the term (10/1.3)(10g(10g(x +1)+ 1))1/2 is used to push the curve
to zero near the origin. Then, foris =1, ...,4,b = 0,1
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4
Pisp = Rﬁo,b,is'ﬁl,b,is (x) 1_[ (1 - Rﬁo,b,k'ﬁl,b,k (x)) ’
k=is+1
4
Po,p (x) = 1_[ (1 - R,Bo,b,k'ﬁl,b,k (x)) ’
k=1

where the parameters f p, is, f1.p,is, b = 0,1,is = 1,2,3,4 are given by the following Table AVII.

g 1 0

is 1 2 3 4 1 2 3 4
Bogs -3.52 -6.05 -845 -10.12 -1.57 -410 -632 -7.82
P1gs 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.09

Table AVIl: Model Parameters

The police-reported risk P is obtained from IS as follows:?

0 is=0,
005 is=1,
P(P > 1|IS =is) =10.65 is=2,,
094 is=3,
1 is=4
and
{0 is =0,
0 is=1,
P(P =2|IS=is) =10 is=2,.
0.04 is=3,
0.63 is=

Lastly, to simulate the sample criteria of an in-depth accident study as GIDAS, we set
P(accident i in in-depth sample | at least one occupant in accident i with IS > 1) = 0.05 and
P(accident i in in-depth sample | no occupant in accident i with IS = 1) = 0. The small probability of 0.05
should consider that an in-depth study such as GIDAS is limited to only some areas of the national sample. Each
accident in the in-depth accident study is then included in full detail, which means IS, P, technical risk, and traffic
domain here. In contrast, the national accident database contains each accident but only limited information on
the traffic domain and police-reported injury severity P for each occupant.

The objective is to estimate the injury distribution in detail: MAISO-1, MAIS2, MAIS3, MAIS4+. We denote this
as $ =0,1,2, and 3, respectively. We compare the mapping approach present in this paper with the weighting
approach. The mapping approach is applied as presented in Section Il (The Link between P- and S-Scale). For the
a; parameters, the four traffic domains are grouped into two groups. The first three traffic domains form the first
group, and the fourth one forms the second group. For the weighting approach, each case in the in-depth accident
study gets a weight such that specific marginal distribution criteria are matched. This weighting can be done only
to marginal distributions available in both samples. Thus, in this simulation, the distribution of the traffic domains
between the weighted in-depth accident study and the national level are matched. We simulated 4 000 000

2 As mentioned above, the injury severity IS is motivated by MAIS. Hence, P(P = 2|IS = s) can be understood
as the fatality risk of MAISO, MAIS1, MAIS2, MAIS3, and MAIS4+ injuries, respectively. Similarly, (P = 1|IS = is)
can be understood as the risk of hospitalization or dying. The probabilities are oriented by the empirical
probabilities in GIDAS.
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crashes, and the in-depth study sampled of these about 72 000. The obtained injury severity distribution in the
P-scale is given in Table AVIII. The sampling criteria cause the in-depth sample to be heavily biased and tend
towards more severe crashes.

P full-sample in-depth sample

0 98.83 91.33
1 1.08 7.99
2 0.09 0.67

Table AVIII: Relative injury severity distribution in P-scale (simulation result)

The injury distribution of the full-sample, in-depth study, and estimation approaches are given in Table AV.
The weighted in-depth sample is less biased but the covariate traffic domain is not strong enough to reduce the
bias substantially. Additional information, such as technical crash severity, would be required to eliminate all bias.
The projection by mapping approach can eliminate the bias for P(S =2) and P(S = 3) because the
corresponding conditional probabilities are unaffected by the sampling criteria. The bias for P(S = 1) and
P(S = 0) is also substantially reduced although not completely since the probability P(S = 0|P = 0) is assumed
to be 100%, but it is actually 99.67%. However, this conditional probability cannot be estimated without bias
using the in-depth sample due to the sample criteria. Indeed, the conditional probability in the in-depth sample
is 97.3%. What can be done is a sensitivity analysis on the assumption P(S = 0|P = 0) = 1. The sample criteria
of the in-depth sample results in a bias towards more severe injuries and, consequently, an undersampling of § =
0 injuries. Hence, the probabilities of the in-depth sample for Pi,_gepn (S = s|P = 0),s = 0,1,2,3 can be used
as a lower bound in a sensitivity analysis. That is we set Pp4tionai (S = S|P = 0) = Pip_gepen(S = s|P = 0) and
redo the mapping. The results of this approach are denoted as mapping (SALW) in Table AV. This mapping (SALW)
can be understood as a bound towards a more severe injury distribution, i.e., given the sampling criteria of the
in-depth study, the injury distribution of the full sample cannot be more severe than mapping (SALW). Note that
even mapping (SALW) is less biased than the weighted in-depth sample.

S =MAIS full-sample in-depth sample weighting mapping mapping (SALW)
0 01 98.76 90.75 91.26 99.08 96.43
1 2 0.89 6.57 6.23 0.57 3.14
2 3 0.22 1.67 1.58 0.22 0.29
3 4+ 0.14 1.01 0.94 0.14 0.14

Table AIX: Relative injury severity distribution in S-scale (simulation result)
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