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Structural Optimisation in Vehicle Development for the current Euro NCAP side crash protocol:
how to minimise the structural changes due to the current barrier stiffness and geometry
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Abstract The current Euro NCAP side impact protocol introduces the dummy WorldSID 50th percentile, which
exhibits a much more complex performance than the EuroSID-Il; and AE-MDB barrier, which causes new loading
patterns in the structure.

The aim of this study is to identify the key differences between the past and current Euro NCAP protocols and
propose countermeasures to achieve the new requirements using a mid-sized previously designed vehicle.
Outcomes from a possible Euro NCAP increase in crash speed from 50 km/h to 60 km/h were also evaluated.
Finite Element Method (FEM) tools were used, including validated and correlated models with experimental full
car tests.

With the current protocol, the most critical anatomical area observed in this research was the pelvis. The
countermeasures proposed and evaluated to decrease the load on this area were:

e sill and B-pillar redesign;
e stiffness reduction of the door panel;
e door beam optimisation;

After the application of the structural countermeasures, the sacroiliac force decreased by 24.9% and the
pubic force decreased by 32.5%. Furthermore, similar results were obtained in the 60 km/h test. This
countermeasure describes a potential strategy to enhance occupant protection in mid-sized cars without
increasing the cost or weight of the vehicle.

Keywords AE-MDB, crashworthiness, Euro NCAP, side crash, WorldSID 50th, FEM.

I. INTRODUCTION

Side and oblique collisions account for approximately 16 and 41% of all traffic collisions [1]. Side impacts
involving US passenger cars accounted for 33.4% of all fatalities and 28.1% of all injuries on American roads
(reference based on the Traffic Safety Facts 2000—-2009, published by NHTSA, a compilation of Fatality Analysis
Reporting System (FARS) and General Estimates System (GES) data). In previous epidemiologic research, side
impact was found to be twice as likely as frontal impact to be fatal [2].

The current European regulatory side-impact test procedure (ECE R-95) has been evaluated by several studies
to assess whether it is representative of the actual car fleet in Europe. The main conclusion reached by these
studies was that the past test method may not reflect the real vehicle fleet and real-life traffic conditions [3].
Thus, the European Enhanced Vehicle-safety Committee (EEVC) Working Group 13 (WG13) has coordinated
studies to improve the applicability of the side-impact test procedure (ECE R-95) to the present European fleet.

The Advanced European Mobile Deformable Barrier (AE-MDB), which is more representative of the European
vehicle fleet, was developed to enhance the ECE R-95. The AE-MDB presents a higher stiffness, increased weight
and enlarged width compared to the MDB. This last one was used by Euro NCAP between 1997 and 2014. The
AE-MDB weighs 1,300 kg, which is 350 kg heavier than the MDB. The AE-MDB is also 200 mm wider than the
MDB and includes a 45 degree chamfer on the edges. Although the barriers have the same height, the initial
ground clearance is 50 mm higher in the AE-MDB. Both barriers are composed of six blocks of varying stiffness;
the AE-MDB has stiffer blocks in the side-low part of the barriers [3]. All these facts demonstrate that the AE-
MDB has been developed to better represent the current vehicle frontal face. The midplane of the MDB is
aligned to the vehicle’s R-point, whereas the AE-MDB is aligned 250 mm rearwards. This position was designed
to represent a “moving car to moving car” side impact.
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Euro NCAP examines and modifies its protocols to encourage the automotive industry to improve cars and
therefore increase occupant safety. Thus, Euro NCAP has included the AE-MDB barrier in the side-impact
protocols since 2015. In addition, the past crash test dummy for side-impact protocols, European Side Impact
Dummy EuroSID-1l 50th percentile, has been replaced by the WorldSID 50th. The overall biofidelity rating for
the WorldSID 50th has increased substantially compared to the EuroSID-II [4].

Even though the barrier has changed, the velocity used in the present protocols is still below that found in the
majority of real-life fatal crashes [5]. Thus, the present speed of 50 km/h for the AE-MDB should be increased by
about 15 km/h to be more representative of real-life crashes [6]. It is for this reason that the Korean New Car
Assessment Program (KNCAP) side protocols use the AE-MDB barrier with a higher speed (55 km/h) [7]. With
that in mind, the countermeasures presented in this paper were also assessed at 60 km/h, in addition to the
protocol velocity of 50 km/h.

The introduction of the side-impact protocols by Euro NCAP poses a challenge to the automotive industry.
This study details the implications for a 2012, five-star-rated vehicle when the present side-impact protocol is
applied to it and also proposes some countermeasures to improve occupant safety in order to achieve the Euro
NCAP 2015 requirements.

Description of different countermeasures
As a first part of this project, a biomechanical study was carried out to evaluate the most critical dummy values
in a side-impact crash when using the barrier AE-MDB. It was obtained that the pelvis area (pubic and sacroiliac
forces) exceeded its upper performance limit for both barrier velocities (50 km/h and 60 km/h). The pelvis was
the only body region to go beyond its upper performance limit in AE-MDB 50 km/h. Therefore, the
countermeasures were focused on reducing pubic force, pelvis acceleration and sacroiliac force. Moreover,
countermeasures were tested with AE-MDB 60 km/h in order to show their validity in more severe conditions.

The first countermeasure was the elimination of the pelvic energy-absorbing element. Since the
introduction of dummy WorldSID 50th, some doubts have arisen regarding the usefulness of this element with
the new pelvis and new lumbar spine.

The second countermeasure was the orientation change in door beam. The new orientation was almost
horizontal in order to increase the stiffness in door lower parts.

The third countermeasure was the sill and B-Pillar redesign. These parts were redesigned to improve their
behaviour in side impact with taller cars, which are represented by the AE-MDB barrier.

Il. METHODS

All the values, results and countermeasures of this study were based on finite element methods (FEM). One
mid-size car, weighing 1,401 kg and awarded five stars by the Euro NCAP test 2012, was used as the reference
vehicle. This real car was additionally crashed using the Euro NCAP 2015 side-impact protocol in order to
correlate and validate the FE model.

The reference FE model used in this study was comprised of a total of 2,411,672 shell and solid elements,
having an average mesh size of 7-10 mm. A cluster of SEAT, S.A was used to compute model simulations using
Pam-Crash 2011. The current SEAT, S.A cluster is comprised of several Intel® Xeon® CPU E5-2670 @ 2.60 GHz 32
nodes, with 16 cores running on a Red Hat Enterprise Linux operating system, making a total of 512 cores with
64 GB Memory RAM. A controlled time step of 0.8 us was imposed, the model was tested using up to 16 CPUs
and computational times were recorded. The materials used by the model are from the Volkswagen material
database.

This study was carried out to identify the key differences between the past and the current Euro NCAP
protocols for side impact. In addition, a new test was incorporated to broaden the scope of the present study.
This test has the same characteristics of the current protocols, but with the barrier velocity increased to 60
km/h. In order to reduce the variables, the WorldSID 50th dummy was placed in the driver position in all three
tests performed, thus the only difference between the past and present protocol was the barrier.

The reference FEM crash was the Euro NCAP side-impact test procedure with the dummy WorldSID 50th in
the driver position and the simulated barrier was the MDB, aligned in the vehicle’s R-point at a speed of 50
km/h. This reference model was created from the original FE model, which was used during the development of
the vehicle. The original FE model was correlated with a different crash test.
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The reference FE model incorporates curtain and thorax airbags, manufactured by KSS and TRW. The firing
time of these airbags and the seatbelt were defined at 7 ms after the initial contact, per laboratory crash
observations.

After the reference FE model was created, the other two models were developed. In the AE-MDB 50 test the
barrier used was the AE-MDB, aligned with a point 250 mm rearward from the vehicle’s R-point. The WorldSID
50th dummy was positioned in the driver position.

This model was correlated with the additional real crash test. The dummy and the barrier were new variables
introduced regarding the original and correlated model to create the AE-MDB 50 test. The barrier’s FE model
was the 4.01 version from the Volkswagen database and the dummy’s FE model was the 2.5 version from ESI
Germany. The barrier had already been correlated by the manufacturer, thus the correlation efforts were
focused on the biomechanical values of the dummy and its kinematics. To achieve this objective, the contacts
between the dummy and its environment were modified in number, type and friction. Significant emphasis was
placed on seatbelt, airbags and seat foam.

Figure 1 shows the results from the correlation of the AE-MDB 50 test. Some discrepancies are detected in
the rib deflection, especially in the chest area. They present a similar tendency, however, which allows for
predictions. On the other hand, values of the lower part of the dummy (T12, pelvis, pubis and sacroiliac), which
are the main focus of this study, present an accurate correlation.
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Fig. 1. Crash test — FE Model correlation max. values.

Additionally, a second simulation with the AE-MDB was run at a collision speed of 60 km/h. This test was
included in order to explore the behaviour of the countermeasures in the event of facing a more challenging
protocol. Table | summarises these different simulated models, and additional information could be found at
Appendix 1.

A structural and biomechanical study was made using the three models. The study was carried out to assess
the differences between the past and current protocol. Subsequently, different countermeasures were
simulated individually in the AE-MDB 50 and in the AE-MDB 60 to assess their benefits. Finally, all
countermeasures were included simultaneously in both AE-MDB models to evaluate their compatibility.
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TABLE |
SIMULATION-TEST MATRIX
Reference
Simulations Model Model AE-MDB(50) Model AE-MDB(60)
Barrier MDB AE-MDB AE-MDB
Dummy FR WS WS WS
Speed Barrier 50 km/h 50 km/h 60 km/h

Elimination of the pelvic energy-absorbing element

Common strategies introduce an energy-absorbing element located in the low-rear end of the front door panel,
increasing the stiffness of the panel (Fig. 2). The goals of this element are to dissipate energy and to modify the
EuroSID-Il kinematics to move the dummy away from the door panel and thereby reduce the applied loads.
Since the introduction of the WorldSID 50th, especially its lumbar spine, the biofidelity of this element has been
under assessment. Thus, the energy-absorbing element was eliminated in order to evaluate its influence on the

dummy results.

Fig. 2. Energy-absorbing element location.

Change in orientation of the door beam
To improve the door performance when subjected to AE-MDB loads, the door beam was rotated to increase the
stiffness of the lower part of the door (Fig. 3). From this optimisation, the door beam is connected almost
horizontally at the lower hinge of the door, increasing its stiffness.
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Fig. 3. Present door beam position (left); optimised door beam position (right).

Sill and B-Pillar redesign
In a side crash, two of the most important parts responsible for good structural behaviour are the sill and the B-
pillar. They function to dissipate energy and transfer load throughout the bodywork.

The energy and mechanical loads endured by both the sill and the B-pillar were increased when the AE-MDB
was adopted. Therefore, three geometry modifications were evaluated: a belt retractor reinforcement
lengthening to join the sill upper and lower parts; a reduction of sill section to introduce the B-pillar base; and a
redesign of the B-pillar base to adapt it to a new sill section. (The detail of this redesign is described in Fig. 4.)

Fig. 4. Sill and B-pillar base. (A) Original, and (B) countermeasure.

Biomechanical assessment

The biomechanical values were expressed as a percentage of the different upper performance limits in order to
assess and compare them. The limits shown in Table Il summarise the Euro NCAP upper performance limits.
Additional values that are not considered by Euro NCAP, such as sacroiliac force, were included in this research
to better understand the dummy’s performance.
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TABLE Il
BIOMECHANICAL VALUES LIMITS

Lower
Results Unit limit
HIC 15 - 500
Peak resultant head acc. [g] 72
Shoulder force [N] 3000
Shoulder rib deflection [mm] 70
Thoracic rib deflection [mm] 28
Abdomen rib deflection [mm] 47
Pubic force [N] 1700
Sacroiliac force (not Euro NCAP limit) [N] 3000
Lower spine acceleration [g] 75
Pelvis acceleration [g] 100

lll. RESULTS

Reference situation - Vehicle deformation

The outer deformations of the vehicle side at three heights for the three FE simulations are presented in Fig. 5
so as to compare their intrusions. The R-point was chosen as the grid’s reference to represent the intrusion
contours. Initial ground clearance was 50 mm higher in the AE-MDB impact condition, which resulted in less
energy being distributed throughout the bodywork (Fig. 5). The vehicle’s final deformation at the R-point was
similar between MDB and AE-MDB 50. The maximum intrusion for the MDB test was located at the R-point due
to the barrier being aligned at this point and higher stiffness of the middle-block. On the other hand, the AE-
MDB geometry and its rearward alignment produced a different intrusion profile. In this case the maximum
intrusion was located in the middle of both doors instead of being located at the R-point.

At the pelvic height, the relative intrusion was larger with the AE-MDB than with the MDB, due to the higher
stiffness of the low-blocks in the AE-MDB face. This type of intrusion may be associated with more severe
injuries in the pelvis. Therefore, the AE-MDB test procedure was more severe than the MDB, producing higher
intrusions due to both weight increase and higher stiffness face. Additionally, intrusion profiles from simulated
results at 60 km/h at three different height levels can be seen in Fig. 5.
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Fig. 5. Intrusion Profile measured at the vehicle exterior structure.
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Reference situation - Driver dummy injury criteria

Focusing on the driver dummy for the MDB test (Fig. 6), all injury criteria values for the car (without design
optimisation) were below 90% of their limits. On the other hand, in the AE-MDB test at 50 km/h, the pubic and
sacroiliac forces were above the limits (Fig. 6), this values increased by 38.6% and 25.8% respectively comparing
to the MDB test. Results for the AE-MDB 60 km/h test indicate that the thorax rib deflections also became
critical (Fig. 6). Pertaining to head, shoulder and abdomen, injury values of both MDB and AE-MDB 50 were
below the limit value (60%). For chest injury, the lower rib presented the worst biomechanical values of all
three tests. In the AE-MDB 60 km/h test, however, the chest rib deflection values were above the limits because
the side airbag bottomed out. This effect was mainly caused by an increase in the impact speed. The AE-MDB
shape increased the door and B-pillar intrusion velocity, specifically at the pelvis height. Consequently, the inner
part of the vehicle impacted the pelvis at higher velocity, thus producing increased injury values. This high
intrusion velocity also reduced the deployment airbag space, which caused difficulties in the mitigation of
impact energy by the side airbag.

It should be noted that only the pelvis injury values reached the limits in AE-MDB 50 km/h. Therefore, the
countermeasures were focused on reducing these values: the pubic force, the pelvis acceleration and the
sacroiliac force. Moreover, those countermeasures were tested with AE-MDB at 60 km/h in order to show their
validity under more severe conditions. Since the aim of the countermeasures was to reduce the pelvic injury
values in the AE-MDB tests, it was necessary to cope with three aspects: the higher intrusion velocity of the
vehicle side; the increased stiffness of the low side barrier face; and the door panel stiffness at the impact
location with the occupant.
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Fig. 6. Injury values in the three different tests.

Performance of countermeasures

Elimination of the pelvic energy-absorbing element

The elimination of the pelvic energy-absorbing element in the AE-MDB 50 km/h test reduced pelvis injury
values, especially in pubic force (Fig. 7A). The decreased stiffness in the contact location between the pelvis and
the door panel lowers the force received by the pelvis. Due to the decreased stiffness, the pelvis acceleration
and the sacroiliac force values were reduced by 12.1% and 5.4%, respectively. Meanwhile, the pubic force value
was reduced by 21.5%, placing its value well below the limit. The rest of the values remained similar. All injury
values, except for the sacroiliac force, were calculated to be below the limit by at least 15% of the criteria.
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In the AE-MDB 60 km/h test, the variation of the injury values was quite similar to that obtained in the 50
km/h test, as shown in Fig.7B. The pelvis injury values were reduced significantly and the rest of the injury
values did not experience significant variation. The main decrease in injury value was produced in pubis; the
value was lowered by 25%, placing it near its limit. The velocity of the impact in this test was higher and,
consequently, the injury values were higher as well. Therefore, the padding elimination in this test obtained
greater reduction in the injury values.

The elimination of a pelvic energy-absorbing element in both tests caused a reduction in pelvis injury values
without any significant increase in the other injury values.

Results of door beam optimisation

The results of the door beam countermeasure showed that the pubic force value was reduced in both tests. In
the AE-MDB 50 km/h test the pubic force was reduced by 8.6%, while in the 60 km/h test the value was
decreased by 8.7%. This reduction in pelvis force resulted from the stiffness increase in the lower-side parts of
the door, which decreased the intrusion velocity of the door panel. Implementing the door beam
countermeasure caused the pubic force value to be below the limit in the AE-MDB 50 km/h test.

All other injury values in the AE-MDB 50 km/h test did not obtain a significant variation (less than +5%).
Conversely, in the AE-MDB 60 km/h test all injury values did not result in any significant variation, with the
exception of the shoulder force. The 13.0% shoulder force value reduction was produced by a change in dummy
kinematics throughout the test.

Results of Sill and B-Pillar redesign

The redesign of the sill and the B-pillar resulted in a controlled bending behaviour. More energy was dissipated
in these tests, causing a reduction in the low side intrusion velocities. Due to the difference in energy
dissipation, all lower extremity injury values were reduced with the introduction of this countermeasure, with
the exception of the T12 measurements in the 60 km/h test.

In the AE-MDB 50 km/h test, all three pelvis values decreased. Pubic force decreased by 11.9%, pelvis
acceleration decreased by 22.8%, and sacroiliac force decreased by 21.2%. In the test, the B-pillar impacts
against the seat through belt retractor reinforcement, which produces contact between the seat structure and
the rear part of the pelvis. The large reduction of the sacroiliac injury value was caused by the decrease in B-
pillar intrusion velocity. This decreased velocity also caused all injury values in this test to remain below the
limits.

Examining the chest and abdomen injury values, whole rib intrusion values were reduced due to a better side
airbag deployment. However, head and shoulder injury values increased, but none of these injury values was
found to be above 80% of the injury limit. Thus, the introduction of this countermeasure significantly enhanced
the dummy protection in the AE-MDB 50 km/h test.

The trend of decreasing injury values was similar when comparing the AE-MDB 50 km/h and the 60 km/h
tests, with the only exception being the T12 acceleration. The reductions of other injury values were increased
when compared to the AE-MDB 50 km/h test; the pubic and sacroiliac force decreased by 14.9% and 20.2%,
respectively, and all chest intrusion obtained was more greatly reduced. For example, the lower chest rib value
decreased by 16.0%. In the 50 km/h test, the head and shoulder injury values increased, but did not exceed, the
injury limits. Hence, sill and B-Pillar redesign countermeasure also provides an improvement of the dummy
safety in the AE-MDB 60 km/h test.
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Fig. 7. Injury values in the (A) AE-MDB 50 km/h test and in the (B) AE-MDB 60 km/h test with the different
countermeasures.

Results of the simultaneously applied countermeasures

A model was built to determine the potential of different countermeasures and the effect of the different
vehicle and occupant interactions (Fig. 8). Focusing on the AE-MDB 50 km/h test, all values remained below the
established injury limit, with a safety margin of 17%.

The pelvis was the location where the largest reduction occurred. Initially, the sacroiliac force achieved 110%
of its limit and the pubic force achieved 104% of its limit. However, after the global countermeasure the injury
values were 82.7% of the limit for the sacroiliac force and 71.9% of the limit of the pubic force.

From analysis of the rib deflections, the calculated abdomen injury values decreased by 16% and 20%, and
the middle and the lower chest values decreased by 5%. However, the upper chest increased by 2.5%.
Conversely, both the shoulder and the head injury values increased with the implementation of the global
countermeasure. None of them exceeded 75% of their limit injury value, however. Higher injury metrics were
caused by energy transference from the lower to the upper part of the dummy, because there was a load
reduction in the pelvis for this test.

Overall, the trend of decreased injury measures in the AE-MDB 60 km/h test was similar to the 50 km/h test.
T12 acceleration value was the only injury value to behave differently: it increased for the sill and B-pillar
countermeasure. The highest decrease in injury value was observed in the pubic force, which decreased by
35.1%. Abdominal rib injury metrics decreased by the same amount in both tests. However, the decrease in
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chest lower rib value was greater in the AE-MDB 60 km/h test, which approached the rib injury limit. The
remaining two chest values were above the injury limit due to their initial high values. Head and shoulder injury
calculations increased, similar to the 50 km/h test, with the shoulder elongation reaching the highest likelihood
of injury and the injury metric reaching 88.9% of its limit.
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Fig. 8. Injury values in the (A) AE-MDB 50 km/h test and in the (B) AE-MDB 60 km/h test, with the
countermeasures applied simultaneously.

IV. DISCUSSION

The use of the AE-MDB increased the intrusion velocity compared to that of the MDB, i.e. it caused higher
deformation of the vehicle side. This increased deformation has been previously reported throughout literature
[8-10] and has been associated with more severe injuries [6]. With the new stiffness distribution, this increased
deformation was more obvious in the side-lower parts of the vehicle, which were further from the symmetric
axis of the barrier. Due to this fact, there is a decrease in the deployment time of the restraint systems. This
decrease in deployment time of restraint systems means that these restraint systems will likely need to be more
precisely developed.

All these structural changes resulted in changes in the biomechanical injury values calculated from the AE-
MDB 50 km/h test. The injuries that increased the most, or were placed closer to their respective injury limits
are: thorax rib elongation; the pubic force; and the sacroiliac force. The increase in rib deflections was caused
by higher intrusion velocity, which caused a subsequent reduction airbag deployment volume. This decreased
airbag deployment volume increases the pressure of the airbag, which likely increases injury measurements.
The increase in the pubic force injury value was caused by higher stiffness of the barrier causing a larger
intrusion value and thus producing a more severe impact against the pelvis. Although the sacroiliac force value
is currently not assessed in the Euro NCAP side-impact protocol, it should be taken into account to better
understand the distribution of forces for the occupant. Their values result from the impact between the belt
retractor reinforcement and the seat, and from the impact of the seat structure against the rear part of pelvis.

Additionally, previous studies [6] have shown that the 60 km/h test produces greater deformations than the
50 km/h test in all areas of the vehicle structure. The highest risk injury values are the rib chest deflection and
the forces in pubis and sacroiliac joint, as in the other test, but with higher values. In this test, the violating
values are the same as in the AE-MDB 50 km/h test and the three chest rib deflections.

The goal of the countermeasures is to decrease the pelvis force injury values so that they remain below the
injury thresholds in the 50 km/h test. In addition, the countermeasures were tested in a 60 km/h test in order to
verify their functionality in higher velocity impacts.
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The first countermeasure was the elimination of the pelvic energy-absorbing element. In the previous Euro
NCAP barrier test, the EuroSID-1I pelvis contacts with energy-absorbing element at the outset of the crash. Due
to the high stiffness of the energy-absorbing element, the pelvis moves away from the door panel. This
movement is transmitted from the pelvis to the upper part of the dummy through the lumbar spine, reducing
thorax and abdomen loads. Similar kinetics are not reproduced with the WorldSID 50th dummy because of
geometric and stiffness differences in its lumbar spine.

The lumbar spine has a significant influence on the global kinematics of the dummies. The WorldSID 50th
lumbar spine has a lower stiffness than the EuroSID-II [11]. Also, the current protocol assigns the WorldSID 50th
dummy a lower injury limit value at the pelvis area. As a result of protocol changes in injury values and the
different energy distribution in the new protocol, the benefit of the padding with the WorldSID 50th has been
reduced. The presence of the energy-absorbing element was not that important in this loading condition.

The introduction of the AE-MDB with higher mass, different geometry and a higher stiffness in side-low part
has created the need to increase the stiffness in the side-low part of the vehicle. Several elements are present
in the structure that absorb and distribute the energy in side impacts, one being the door beam. Therefore, the
door beam was optimised by modifying the location of the joints and the orientation of the beam. This
countermeasure was focused on reducing the intrusion velocity of the door, thus increasing the stiffness at the
lower part of the door, so the beam cushions the impact between the door panel and the dummy.

Lastly, the sill section and the B-pillar base were redesigned in order to reduce bending and torsional
behaviour. These phenomena are induced by the higher energy involved in the crash and the new barrier’s
geometry. Specifically, the increase of 50 mm in the initial ground clearance makes the initial contact between
the vehicle and the barrier to be located over the sill. Initially, the sill and B-pillar were designed to perform
properly in bending against the MDB. Due to this different loading distribution, the sill section was lost quickly,
decreasing both the energy dissipation and the load distribution throughout the bodywork. The proposed sill
design optimises the behaviour of the sill, enhancing the effectiveness of the structure and reducing the
intrusion velocities.

These three countermeasures were included in a global one to test them simultaneously. All the calculated
injury values of the abdomen and the pelvis in both tests, with the exception of T12 acceleration in the 60 km/h
test, were reduced with the introduction of the global countermeasure. Thus, all the biomechanical values in
the 50 km/h test were below the injury limit.

The use of the global countermeasure reduced the pubic force value by 33% in both tests, placing it below the
injury limit. The reductions were caused by the elimination of the padding. Sacroiliac force was the other value
in the 50 km/h test that was placed below the injury limit when the global countermeasure was applied. It
decreased by 24.9%, due to the lowered intrusion velocity of belt retractor reinforcement. Conversely, in the 60
km/h test, the sacroiliac injury value was reduced by the same percentage as in the other test, although this
was not enough to be below the injury limit. The last pelvis acceleration obtained reductions of 25% in both
tests. These reductions were caused by the first and third countermeasure (the pelvic energy-absorbing
element and the sill/B-pillar effect).

The abdomen rib elongation injury metrics decreased between 16% and 21% in both tests, which placed the
values further from the injury limits. Decrease in this injury metric was caused by the reduction of the intrusion
speed in the B-pillar lower part, which resulted in a larger volume for airbag deployment. However, the thorax
rib elongation injury metric did not decrease in the 50 km/h test, and decreased by only 11.9% in the 60 km/h
test.

Initially, and without countermeasures, when the pelvis impacted against the door panel, the upper torso of
the dummy moved away from the door panel. The dummy kinematics changed due to the introduction of the
countermeasures, which reduced the severity of the impact between the pelvis and the vehicle interior.
However, all of the head and shoulder injury values increased. In the AE-MDB 50 km/h test, the shoulder
elongation injury value increases the most, up to 75.1% of its injury limit. In the 60 km/h test the shoulder injury
value increased up to 88.9% of its injury limit. These injury value increases were caused because the shoulder
was not covered by the airbag, so there was no energy-absorbing element between the shoulder and the
vehicle interior.

To reduce shoulder injury values, an airbag adapted to the new impact requirements should be implemented.
This airbag should cover the WorldSID 50th shoulder in order to avoid direct impact against rigid elements
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inside the vehicle. Also, these kinds of airbag would increase the dummy retention and, as a consequence,
probably further decrease the thorax ribs deflection.

The global countermeasure obtained an improvement of occupant safety in the AE-MDB 50 km/h test, with
all of the injury value metrics remaining below the threshold of injury. This was achieved without increasing the
weight of the car, unlike other studies [8][9], and without using pre-crash countermeasures [12]. Moreover,
despite being beyond the scope of this study, the global countermeasure was tested in oblique pole test
obtaining none relevant changes.

V. CONCLUSIONS

With the introduction of the AE-MDB and the WorldSID 50th, Euro NCAP has made a step forward in terms of
safety standards. The tests are now more representative of the field not only regarding the impact severity but
also the human behaviour. This test has a strong impact in midsized cars in terms of pelvis loading, leading the
pubic and sacroiliac forces to increase by 38.6% and 25.8%, respectively, setting them over the accepted injury
limits.

This paper shows that it is manageable to meet the current Euro NCAP requirements with a safety margin of
over 15%, and that it is also possible to reach a good protection level at higher speed through vehicle structure
optimisation. Following introduction of the proposed structural countermeasures, the sacroiliac pubic force
decreased by 24.9% and the pubic force decreased by 32.5% in the AE-MDB 50 km/h test. Furthermore, similar
results were obtained in the 60 km/h test.

Another important conclusion is that safety strategies, based on less biofidelic dummies such as the EuroSID-
Il, must be reviewed as they may be not that effective on the current testing scenario. Utilising objects such as
the pelvic energy-absorbing element should be minimised since this study showed these elements to be
counterproductive in terms of biomechanical values. Removing the energy-absorbing elements, the pubic force
decreased by 21.5%. the pelvis acceleration by 12.1% and the sacroiliac force by 5.4%.

This paper describes a potential strategy to enhance occupant protection in midsized cars without increasing
the cost or weight of the vehicle. The proposed individual and combined countermeasures have proved to
provide effective safety over the current Euro NCAP standards.
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Fig. Al. Correlation curves.
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