
I. INTRODUCTION

Runtime-efficient human models with active musculature are required to analyse the wide range of future 
crash scenarios and varying human behaviours inside the vehicle. Human body models (HBMs) as digital twins of 
humans are a key tool for developing safe and ergonomic new mobility solutions. In accident scenarios, detailed 
Finite Element (FE) models are used to investigate the injury risk of passengers, while kinematic or multibody 
system (MBS) models of the human body are usually used to evaluate ergonomics. The popular kinematic ergo-
nomics tool RAMSIS generates realistic postures with a probability-based model that relies on pre-recorded pos-
ture studies [1]. Especially in the biomechanics community, OpenSim [2] is a widely used tool for using inverse 
kinematics or dynamics to infer joint forces from pre-recorded subject motions. Although these tools are very 
useful in their application, they lack real-time applicability due to the high computational cost and/or rely on 
measured postures or movements from volunteer studies. This and the foreseeable increase of automated driving 
situations, and therefore the need for analysing the machine and the human not in isolation but in interaction, 
motivate the development of runtime-efficient human models with an active musculature. 

This contribution proposes an approach to learn a surrogate model that describes the human-seat interaction 
by processing force distribution data of simulations with a detailed FE-HBM, i.e. THUMS [3]. Using an MBS mod-
elling approach with active musculature – combined with discrete mechanics and optimal control for constrained 
systems (DMOCC) [4] – shows promise for predicting human-like motion [5] without the need for tracking volun-
teers in experiments. However, the human-seat interaction is crucial for applying those DMOCC-based HBMs in 
a vehicle interior to obtain meaningful results. Including the proposed surrogate model will lead to a run-time 
efficient active HBM that can interact with the car seat and will also enable simulations of longer, more complex 
low dynamic traffic scenarios. 

II. METHODS

The overall methodology is separated into an offline and an online phase. In the offline FEM phase the inter-
action model is trained, while in the online phase the model is used in MBS simulations with the optimally con-
trolled EMMA model [5] (see the schematic in Fig. 1). The interaction between the HBM and the vehicle seat is 
learned in the offline phase. Here, training data are generated by simulating the process of seating the human 
model in detailed passive FE simulations while varying parameters, such as the initial position of the HBM or the 
angle at which the seat is tilted. Then, contact regions for different body parts are defined and the force distribu-
tions of the detailed FE simulations are processed automatically to obtain the resultant forces and torques at 
every body part. To reduce the number of FE simulations required for training, the interaction is learned for each 
contact pair consisting of a body part and a seat part. This results in separate surrogate models per contact pair 
and, thus, a more general overall model that can be applied in a broader range of scenarios. 

Two different approaches are presented, which differ in their processing of the data obtained from the FE 
simulations. Approach 1 uses a surrogate model that approximates the interaction of a contact pair as a function 
of the relative kinematics of the two contacting bodies. Approach 2 incorporates spheres that approximate the 
surface of the contact opponents (see Fig. 2) and then uses the intrusion of these spheres instead of the relative 
kinematics as the input for the surrogate models. This approach is assumed to prevent unphysical behaviour of 
the surrogate model to some extent and to simplify the learning process because the geometry is approximated 
by the spheres. After the automatic generation of training data, machine learning algorithms are utilised for train-
ing the surrogate model representing the interaction [6]. 
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To interact with the learned surrogate model in both the online and offline phases, (i) the partitioning into  
body parts, (ii) the definition of the respective coordinate systems and (iii) the positioning of the spheres are 
shared between the FE and MBS models. In the online phase motions of the HBM are generated using an ap-
proach by Roller et al. [5]. There, optimal control searches for an optimal actuation of the MBS model with respect 
to specific objective functions. The continuous optimal control problem (OCP) is discretised by the DMOCC ap-
proach and solved with the interior point method [5][7]. Since the human-seat interaction obtained from the 
surrogate model appears in the constraints of the OCP that ensure compliance with the multibody dynamics, the 
surrogate must be formulated in algebraic form to allow the calculation of gradients. This restricts the applicable 
algorithms for the data-driven contact model. 

III. INITIAL FINDINGS

Based on the PIPER framework [8], suitable coordinate systems (COS) were introduced in both FE and MBS 
human models to describe their kinematics. A crucial factor was finding a suitable translation between the kine-
matics of the FE model and the low degree-of-freedom MBS model, which combines several anatomical bodies, 
i.e. vertebrae, into one lumped rigid body segment. In the first step, the resultant interaction forces 𝒇𝒇𝑖𝑖res and
torques 𝝉𝝉𝑖𝑖res at COS 𝑖𝑖 were formulated as a function of the human kinematics 𝒓𝒓𝑖𝑖 relative to the seat: 𝒇𝒇𝑖𝑖res =
𝒇𝒇𝑖𝑖res(𝑟𝑟𝑖𝑖); 𝝉𝝉𝑖𝑖res = 𝝉𝝉𝑖𝑖res(𝒓𝒓𝑖𝑖) ∀𝑖𝑖 ∈ 𝐈𝐈. So far, an interaction model has been trained that maps the relative kinematics
to the interaction forces for the head-headrest contact pair. Subsequently, this model was used in an optimally
controlled MBS simulation, confirming the surrogate’s runtime efficiency, and showing the applicability of the
overall approach. Furthermore, spheres that approximate the surface of the contact opponents were defined for
the head-headrest contact pair in the FE and MBS model and first attempts to use the sphere intrusions instead
of the relative kinematics look promising.

IV. DISCUSSION

As shown, the relevant characteristics of the human-seat interaction were extracted from FE simulations to 
form an interaction model that can be applied to an MBS simulation. The surrogate model is a computationally 
efficient representation of the human-seat interaction. It also enables the use of efficient optimal control algo-
rithms in MBS simulations of an HBM and ultimately leads to a framework to generate realistic human movements 
while interacting with the seat. This is especially useful because motion capturing of a person sitting in a vehicle 
is difficult. In addition, the automatic generation of realistic movements of a vehicle occupant can enable car 
manufacturers to integrate active occupant behaviour into an iterative and holistic design process. 

The approach of approximating the surfaces by spheres may have advantages in terms of scaling to other 
anthropometries or avoiding unphysical behaviour but it introduces additional complexity in the offline as well as 
the online phase. The implications of this approach need further investigation and are part of our current work.  

Moreover, the use of a surrogate model to represent human-seat interaction in optimally controlled MBS 
simulations introduces additional discrepancies that require careful validation of the generated motions. 
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Fig. 1. Schematic of the methodology to formulate the 
human-seat interaction with a separation in an offline 
learning phase (left) and an online phase (right). 

Fig. 2. Exemplary placement of spheres for the 
head-headrest contact pair. The FE nodes are 
shown in green (headrest) and blue (head). 
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