Fitting of a Hyper Quasi-Linear Viscoelastic Model for Brain Tissue and Assessment in Head Impact Scenario

Aleksander L. Rycman, Michael C. Bustamante, Duane S. Cronin

I. INTRODUCTION

Head and brain injuries are serious injuries with long-term health and socio-economic consequences. Finite Element (FE) head models can be used to investigate and predict the potential for brain injuries but require a biofidelic representation of tissue mechanical properties and validation. Many contemporary FE head models [1–4] utilize the Kelvin-Maxwell Linear Viscoelastic (LV) constitutive model to represent the mechanical properties of the cranial nervous tissues. The LV model is limited, however, in characterizing materials that exhibit stress-strain non-linearity, viscoelastic stiffening throughout multiple strain rate decades, and asymmetry in tension and compression. Recently published experimental data [5-6] characterized the porcine cranial nervous tissue in tension, compression and shear over a range of strain rates (0.01 s^{-1} , 1 s^{-1} , 50 s^{-1}). The experimental results [5-6] confirmed that porcine brain tissue exhibited stress-strain non-linearity, viscoelasticity in a broad strain rate regime, and asymmetry. The current study aimed to address the limitations imposed by the LV material model by: (1) multimodal fitting of a Non-Linear Hyperelastic material model with Quasi-Linear Viscoelasticity (QLV) to the tissue level experimental data [5-6]; and (2) biofidelity comparison between LV and QLV using the FE Head Model (GHBMC 50th percentile male) in rapid head movement simulation [7].

II. METHODS

The tissue-level experiments in compression (Fig. 1a), tension and shear were simulated and a commercial optimization software (LS-OPT, LST, Livermore, California, US) was used to fit the material parameters. The optimization algorithm fit the hyperelastic (C_{01} , C_{10}) and viscoelastic parameters (G_i) of the QLV model, with the objective to minimize the difference between simulation and nine experimental [5-6] stress-strain curves (3 modes of loading and 3 strain rates). Next, the fit material properties were implemented in the GHBMC average stature (M50) head model. Two versions of the head model (M50_{QLV} and M50_{LV}) were simulated using the kinematics applied to the head from a rapid head movement experiment [7] (experiment number C755-T2) with neutral density targets (NDTs) to track brain tissue motion (Fig. 1b). The models were solved using a commercial FE code (LS-DYNA v9.2 MPP, double-precision, LST, Livermore, California, US). The cranial nervous tissue deformation traces for 6 NDTs were compared with the experimental data (Fig. 1c), and cross-correlation (CC) ratings were calculated.

Fig. 1. a) Tissue-level compression FE model for parameter optimization; b) GHBMC M50 Head model with schematic of anterior and posterior Neural Density Targets (NDTs); c) exemplar experimental trace of 2nd anterior NDT in the X-direction.

A. L. Rycman is a PhD student, M. C. Bustamante is a Research Associate and D. S. Cronin (e-mail: dscronin@uwaterloo.ca; tel: 519-888-4567 x32682) is Professor in the Department of Mechanical and Mechatronics Engineering at University of Waterloo, Canada.

III. INITIAL FINDINGS

The optimized QLV material model represented all nine stress-strain curves with a cumulative coefficient of determination (R²) of 0.57, and a good fit to the compression data [6] (Fig. 2a). The LV had a lower coefficient of determination of 0.41. Comparison of NTDs traces between the GHBMC M50_{QLV} head model correlated better to the experimental results (CC = 0.656) compared to the GHBMC M50_{LV} Head model (CC = 0.581).

TABLE I

Fig. 2. a) Fit QLV model compared to the compression test data [6]; b) Comparison of traces between experimental data [7] and both versions of the GHBMC M50.

IV. DISCUSSION

Simultaneous fitting of the constitutive model to multimodal data is challenging. The fitted QLV material model better represented the tissue-level data compared to LV material model. Firstly, the QLV material model utilized a hyperelastic function that more accurately represented the non-linearity and asymmetry measured in the experimental data. Secondly, the quasi-linear viscoelasticity represented the change in slope of the curves at higher strain rates. The improved model reflected a relative increase in the coefficient of determination of 39%. Further improvement could be achieved by incorporating the reported brain tissue anisotropy into the material model. The simulation of the GHBMC M50 head model with the QLV (M50_{QLV}) model generally improved the correspondence to the experimental data [7] by lowering the magnitude of the observed displacement (Fig. 2b), and by shifting the peak deformation in time in all 12 NDTs traces. Further, 9 out of 12 NDTs traces showed improved correlation with the experimental data that is highlighted by a 13% increase of the CC rating. Overall, the fitted QLV material model represents more biofidelic tissue-level experimental data in three modes of loading and shows better correspondence to the reported PHMS brain deformation data.

V. ACKNOWLEDGEMENTS

The authors would like to thank the Global Human Body Models Consortium (GHBMC) for use of the model and Compute Canada for providing the necessary computing resources.

VI. REFERENCES

[1] Zhang, L., et al., Stapp Car Crash J, 2002. [2] Mao, H., et al., J Biomech Eng, 2013. [3] Miller, L. E., et al., Biomech Model Mechanobiol, 2016.

[4] Zhang, L., et al., SAE Tech Pap, 2001.

[5] Li, Z., et al., J Biomech, 2020.

[6] Li, Z., et al., J Mech Behav Biomed Mater, 2019.

[7] Hardy, W., et al., Stapp Car Crash J, 2001.