
Abstract Autonomous Emergency Braking systems with Powered Two-Wheelers (PTW) detection (AEB- PTW) 
are expected to equip vehicles in the near future. This study aims at prospectively estimating the performance of 
AEB-PTW in avoiding accidents or mitigating their consequences, based on real-world, representative car-to-PTW 
French accident data. The same accidents were re-simulated using kinematic models of the vehicles, ideal AEB-
PTW sensor models and realistic detection-action logics. The effectiveness of AEB-PTW could then be assessed in 
terms of reduction in fatal, severe, and slight injuries, using injury risk curves that were built from the same 
accidents sample. Performance results showed that fitting AEB-PTW on cars could potentially lead to halving the 
most severe PTW users’ casualties in crossing and left turn across path configurations. AEB-PTW performance in 
car-PTW rear-end accidents was even higher, reaching up to a potential 80% reduction of the most severe 
casualties. This performance is obtained at the expense of a steep upgrade of AEB sensor settings as compared, 
for example, to AEB-Pedestrian. To the authors’ knowledge, this is the first attempt at assessing the potential 
effectiveness of AEB-PTW systems, based on representative accident data, for all levels of injury. 

Keywords Autonomous Emergency Braking (AEB), Powered Two-Wheelers (PTW), car-to-motorcycle accidents, 
effectiveness, injury risk curves.  

I. INTRODUCTION

According to data based on observations extending up to 2016 [1], depending on country, 28% of the 1.35 
million persons killed annually on the road are riders of powered two or three-wheelers (approximately 378,000 
persons killed). Southeast Asia, West-Pacific and South America are the most critical areas, with respective 
proportions of 43%, 36% and 30% of powered two-wheelers (PTW) users among road fatalities.  

In 2019, in European countries, PTW users accounted for 18% (4,166 persons) of road fatalities, of which 45% 
(1,865 persons) were killed in a collision with a passenger car [2]. In France, 749 PTW users were killed in 2019, 
269 of them against a passenger car [3]. 

To increase vulnerable road users’ safety, one solution is to fit cars with Advanced Driver Assistance Systems 
(ADAS). Autonomous Emergency Braking (AEB) is one of these and it can either avoid crashes or mitigate their 
consequences, by automatically applying the vehicle brakes. Depending on technical definition, the system may 
warn the driver and only apply the brakes if he/she is unresponsive.  

The scientific literature contains several studies prospectively addressing AEB-pedestrian effectiveness [4-6] 
with first retrospective studies emerging [7] as the market penetration of AEB technology increases. Only few 
studies prospectively addressing AEB-cyclist effectiveness [8-9] with the help of injury-risk curves, and one 
retrospective study [10] could be found without statistical significance of results due to low market penetration 
of AEB equipped vehicles, which resulted in a small sample of car-to-cyclist accidents involving these vehicles. In 
contrast with the magnitude of the problem, only a handful of studies in connection with AEB effectiveness in 
addressing car-to-PTW crashes have been published to date, to the best of the authors’ knowledge: deducing 
AEB-PTW potential effectiveness was attempted by supposing same effectiveness levels as car-to-car AEB in the 
same accident configurations [11]. Setting up injury risk curves for a more complete assessment was separately 
attempted in another study [12]. 

In this study, injury risk curves were derived from representative French accident data [13]. Various 
parameters were tested as inputs for a set of two regression models. The model that best fits our data was used 
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in the assessment of the AEB technology’s effectiveness in avoiding or mitigating the effects of car-to-PTW 
collisions after re-simulating the accidents with ideal AEB-PTW sensor models and realistic detection-action logics. 
This methodology was applied on the following accident configurations focusing on the most likely AEB- PTW use 
cases to be tested by European New Car Assessment Programme (Euro NCAP) in the upcoming protocols: Straight 
Crossing Path at intersections (SCP); Left Turn Across Path by car with PTW in Oncoming Direction (LTAP/OD); 
Rear-End by car. 

II. METHODS

VOIESUR accident database 
As was the case in previous studies [6][9], French accident database VOIESUR was used in the present study for 

the selection of car-to-PTW accidents. This database was built in the context of the VOIESUR project that was set 
up in 2012 and was partly funded by the French National Research Agency (ANR) and involved four major actors 
of road safety research in France (LAB, CEREMA, IFSTTAR, and CEESAR). VOIESUR database resulted from the 
analysis of more than 8,500 police reports from 2011 in France, which included all fatal accidents and 5% of all 
injury accidents for that year. Based on photos, maps, medical information, and interviews available in the 
reports, accident experts added information related to vehicles, e.g., vehicle type, registration year, environment, 
e.g., infrastructure type, weather conditions, collisions, e.g., impact speed, collision deformation classification,
human functional failure, e.g., detection, diagnostic, decision, types and explanatory elements.

In order to compute the impact speed of each vehicle and subsequently closing speeds, accidents have been 
reconstructed using a well-known methodology in accident science [14].This methodology is based on the kinetic 
energy and linear momentum conservation laws, as well as dividing the accident scenario into various phases for 
each participant, beginning from pre-crash into final position of each vehicle after collision. With the help of 
photos of the implicated vehicles and scaled maps of the accident scene included in VOIESUR accident reports, 
the necessary input parameters for the reconstruction methodology were estimated. Some examples of such 
parameters are the vehicles weight, the angles just before and just after collision, the distance travelled by each 
vehicle after collision, the equivalent energy speed (EES) based on vehicle deformation, etc. Some hypotheses 
about deceleration before and after impact were made, based on surface material (asphalt, gravel, etc.) and 
surface condition (dry, wet, etc.). A tool was developed to enable experts to compute speeds out of these 
parameters. Consequently, the speeds were coded in VOIESUR database. However, the tool did not enable the 
estimation of speed error propagation due to possible measurement errors of the input parameters. 

Not only VOIESUR is a detailed database but it is also representative of the traffic injuries of France for year 
2011. The injuries in this database were weighted [13]. The weight depends on accident and injury severity, the 
type of police force reporting the accident, the type of road, and the type of road users implicated in the accident. 

Sample Selection and Weighting 
Relevant car-to-PTW accidents in VOIESUR were selected according to the pictograms illustrated in Figure 1. 

These pictograms represent the accident scenarios that are likely to be tested in Euro NCAP in the upcoming years 
[15]. All accidents where the PTW user falls before hitting the car were left out of the sample. VOIESUR pictograms 
104 and 105 represent rear-end accidents with the head vehicle respectively maintaining its speed or 
decelerating. In this study, the head vehicle was the PTW and the follower vehicle was the car. Pictogram 302 
represents crossing accidents at intersections with vehicles coming from perpendicular directions. In this 
pictogram, the PTW could be coming from the left or from the right with regards to the direction of the car. 
Pictogram 306 represents accidents with a left turning vehicle at intersection with another vehicle oncoming from 
opposite direction. In our study, the turning vehicle was the car and the oncoming vehicle was the PTW. 

Fig. 1. VOIESUR pictograms used in this study 
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VOIESUR contains a certain number of accidents that cannot be re-simulated, due to lack of information about 
precise trajectories and speeds of the vehicles. With regards to the relevant accidents for this study, only 29% 
were complete with the necessary information. These accidents represent the remaining VOIESUR sample. 
Because of the low proportion of the remaining sample, accidents with the same selection criteria used in 
VOIESUR, were added from the French accident sample of the in-depth accident studies used in SaferWheels 
project [16]. The final sample of accidents to be re-simulated is then composed of accidents from VOIESUR and 
SaferWheels. However, in order to stay representative of the traffic injury situation in France, weights were 
attributed to the SaferWheels sample of injured PTW users selected for this study. When merging the VOIESUR 
and SaferWheels accident samples, it was assumed that the weight of a PTW user from the SaferWheels sample 
was equivalent to the mean weight of a PTW user with the same global injury level and the same accident severity 
level from the VOIESUR sample. In the end, new weights were attributed to PTW users, depending on global injury 
severity and accident pictogram, as shown in equation (1), in order to be representative of the relevant VOIESUR 
sample. 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗   𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  (1) 
 

Where NremInj,Picto is the number of PTW users with an injury severity (Inj) and belonging to a pictogram (Picto) 
in the accidents from the remaining VOIESUR sample and SaferWheels sample, WInj,Picto is the weight assigned to 
these PTW users, and NiniInj,Picto is the number of PTW users with same injury severity and belonging to the same 
pictogram in the relevant VOIESUR sample. 
 

Injury Risk Curves 
AEB-PTW effectiveness assessment involves injury mitigation as well as accident avoidance. This requires injury 

risk curves for fatal, severe and slight injury levels. Thus, a polytomous regression was used instead of a binary 
regression. Two types of regression were tested, such as logistic and complementary log-log regression 
(CLOGLOG), as well as several independent variables (closing speed, impact speed of the car, impact speed of the 
PTW). The different tested configurations are listed in Table I. 
 

TABLE I 
REGRESSIONS TESTED 

Model number Independent Variable Type of Regression 
Model 1 Closing Speed CLOGLOG 
Model 2 Closing Speed Logistic 
Model 3 Car Impact Speed CLOGLOG 
Model 4 Car Impact Speed Logistic 
Model 5 (Car impact Speed) ² CLOGLOG 
Model 6 (Car Impact Speed) ² Logistic 
Model 7 (Closing Speed) ² CLOGLOG 
Model 8 (Closing Speed) ² Logistic 
Model 9 Car Impact Speed and PTW 

Impact Speed 
CLOGLOG 

 
As injury severity is an ordered variable, the proportional odds model was used [16]. The assumption for this 

type of model is that the slope would be equivalent for all levels of the response variable (probability of fatal 
injury and probability of fatal or severe injury). This assumption was tested for each model and when the 
assumption was rejected, the same model with unequal slope was built.  
The nine models were compared according to two criteria: 

-  the Akaike information criteria (AIC)  
- the calculation of expected numbers of fatally, severely, and slightly injured PTW users according to the risk 

curves. These numbers should be as close as possible to the real numbers in our sample: 77 fatally injured, 1,301 
severely injured and 1,671 slightly injured PTW users. 
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Accident Reconstruction and Functional Simulation of AEB System 
The last few metres of pre-crash vehicle trajectories were modelled, going as far back in time as the available 

data would allow, and trajectory types were restricted to portions of circles or straight lines, or combinations 
thereof, with constant acceleration or deceleration. For vehicle turning left across paths configurations, mostly 
straight-line travels prior to left turn were reconstructed, to be as consistent as possible with the accident location 
and known car directions prior to crash.  

Eventually, impact speeds and angles, cruising speeds and possible accelerations/decelerations prior to 
collision, trajectory radiuses of curvature, and whether car was turning right, left, or going straight, were 
reconstructed for all relevant accidents. Visibility masks (fixed and mobile) were also coded. 

With the purpose of simulating the response of AEB-equipped vehicles in real-life accidental situations and 
comparing simulated and actual outcomes, a simulation tool was developed in Matlab (Mathworks; Natick, Mass., 
USA). The inputs to this tool are accident scenarios described by car and PTW pre-crash trajectories. Obstacles 
are either mobile - described by their trajectories - or fixed 2D shapes, described by their relative position to the 
vehicle. Tool parameters include AEB sensor (number, range, vision angle, tilt angle relative to vehicle’s direction 
of travel, longitudinal and lateral position on the vehicle, detection delay, detection type (full or partial)) and 
braking characteristics (rise in brake pressure delay, maximal value (full braking) and slope (full braking delay)). 

For braking to start, the chosen AEB logic requires all of the following conditions to be satisfied:   
a. The PTW has entirely remained in the sensor’s Field-of-View (FoV) for a user-defined detection time. If more 
than one sensor is present, this condition has to be fulfilled by at least one of them. 
b. The PTW lateral distance, relative to the vehicle’s direction of travel, has been lower than a maximal distance 
throughout the whole detection and tracking time. 
c. The model-computed Time to Collision (TTC) becomes lower than a user-defined maximal value. 

Once the decision to brake is made, braking does not start immediately, but after a (user-defined) rise in brake 
pressure delay. And when this is passed, the user-defined maximal braking value (maximal deceleration in m/s2) 
is not reached immediately but after a linear increase over a (user-defined) full braking delay. The braking timeline 
is similar to what was used in [8]. 

The logic for AEB-PTW in Left-Turn-Across-Path configurations is slightly different: braking by AEB will only 
occur once the vehicle’s left turn has started. This strategy is meant to avoid vehicle braking upon detection of 
any PTW travelling in the opposite direction, in the opposite lane.  

The outputs of this tool are car and PTW trajectories (these are determined using a rigid body vehicle model 
that computes the kinematic response to the AEB-controller input, which in turn depends on the braking profile) 
TTC at PTW detection by the AEB system and distribution of accident outcomes  

In terms of limitations / additional features, the authors would like to mention that in its present state, the tool 
doesn’t include any complex model of the driver nor of the driver’s reaction to FCW/AEB warning signals (these 
are not part of the model either). The virtual driver here is a simple trajectory follower. This might result in over-
optimistic assessments of AEB effectiveness. Original drivers’ pre-crash braking manoeuvres (if any) are taken 
into account if and only if they occur prior to AEB’s start-of-braking moment (they are not taken into account if 
they occurred afterwards). Simulations from this paper used an AEB supplements driver braking hypothesis.  

Vulnerable road users that become hidden, e.g., by an obstacle, during detection are taken into account. 
Options include detection time resets to zero (Forget option) or detection resumes (Remember option) when the 
vulnerable road user becomes visible again. The Remember option was used for all simulations in this paper.  

The tool accommodates road conditions, e.g., ice, rain, from the original accident by reducing the possible 
maximal braking values. It also accommodates light conditions (blinding sun, night with or without public lighting) 
from the original accident by reducing the extent of the sensors’ fields of view to half-range, half-angle. Each 
sensor is associated with a sensitivity to light attribute, which allows night conditions, for instance, to have an 
influence on parts of the sensor setup and not on its entirety. Detection or identification errors are not taken into 
account, neither are visibility hampering meteorological conditions. The tool accommodates limits to the vehicle 
speed reduction caused by AEB, for more realism, making speed reduction capped to e.g., 50 kph. 
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Assessed AEB Settings 
Three system setups were assessed in this study, differing by the number, angle, range, and light sensitivity of 

their sensors. They are referred to as single, bi and triple sensor systems with settings given by Table II, Table III 
and Table IV respectively. 

TABLE II 
Single-Sensor Setting 

 

Sensor number Vision Angle Range Night Sensitive Position & tilt 

1 60° 80 m Yes Mid-windshield, 0° 
 

TABLE III 
Bi-Sensor Setting 

 

Sensor number Vision Angle Range Night Sensitive Position & tilt 

1 60° 80 m Yes Mid-windshield, 0° 
2 120° 60 m No Mid-car front, 0° 

 
TABLE IV 

Triple-Sensor Setting 
 

Sensor number Vision Angle Range Night Sensitive Position & tilt 

1 150° 120 m No Car left corner front, 45° 
2 150° 120 m No Car right corner front, -45° 
3 100° 150 m Yes Mid-windshield, 0° 

 
For all systems, detection delay was set to 0.2 s, maximal TTC to 1 s and maximal lateral distance to 2 m. 

Maximum deceleration was set to 0.9 g, to be reached linearly over a full braking delay of 0.3 s, after a rise in 
pressure delay of 0.05 s.  

III. RESULTS 

Sample Selection and Weighting 
VOIESUR represents 13,285 accidents (weighted) between cars and PTW including 383 fatally, 5,239 severely, 

and 9,731 slightly injured PTW users. The VOIESUR relevant sample represents 2,650 accidents (weighted) 
including 77 fatally, 1,301 severely, and 1,671 slightly injured PTW users. Figure 2 illustrates the distribution of 
the PTW users of the relevant VOIESUR sample over the various pictograms and injury severity levels. Pictogram 
306 represents the highest number of injuries with regards to all injury severities, followed by pictogram 302. The 
accidents of pictograms 104 and 105 were added together, because of the small number of accidents and injuries 
attributed to these pictograms. 
 

 
Fig. 2. Number of injured PTW users (weighted) in the relevant VOIESUR accident sample, distributed over 
pictograms and maximum global injury in the accident. 
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As explained in the methods section, a significant number of accidents in the VOIESUR relevant sample were 
not suited for accident simulation. Thus, car-to-PTW accidents satisfying the same criteria as VOIESUR relevant 
sample were selected from the SaferWheels study and added to the VOIESUR remaining sample. Fig. 3 illustrates 
the sample selection process and the accident sample size which is finally constituted of 72 raw accidents (56 
from VOIESUR and 16 from SaferWheels) weighted to be representative of the relevant accident sample. These 
raw accidents are distributed over pictograms and injury severities, showing also if they are from VOIESUR or 
from SaferWheels. It is noteworthy to mention that information available from VOIESUR did not allow the 
simulation of any slight injury accidents. All the latter accidents were available only from the SaferWheels sample.  
 
 

 
Fig. 3. Accident selection process from VOIESUR and SaferWheels databases. 

 
 

 
Fig. 4. Number of accidents that were re-simulated, originating from the remaining VOIESUR sample (in black) 
added to accidents from SaferWheels sample (in grey), distributed over pictograms and maximum global injury 
of PTW users in the accident (not weighted) 
 

Injury Risk Curves 
Table V provides the AIC values for each model. When the assumption of equal slope was rejected, the model 

was tested with the unequal slope specifications. 
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TABLE V 
RESULTS 

Model 
number 

Independent 
Variable 

Link 
function 

Slope AIC 

Calculated – expected 
number 

Fatally 
Injured 

Severely 
Injured 

Slightly 
Injured 

Model 1 Closing Speed CLOGLOG 
Equal 4043.007 -2.57 -7.78 10.35 

Unequal 3994.971 -0.82 -7.04 7.86 

Model 2 Closing Speed Logistic 
Equal 4074.174 1.32 -6.26 4.94 

Unequal 4049.212 4.37 -2.41 -1.96 

Model 3 Car Impact Speed CLOGLOG 
Equal 4647.003 -0.36 -2.66 3.02 

Unequal 4648.890 -0.29 -2.65 2.94 
Model 4 Car Impact Speed Logistic Equal 4667.002 1.04 0.28 -1.32 

Model 5 (Car impact Speed) ² CLOGLOG 
Equal 4627.055 5.22 -11.86 6.64 

Unequal 4602.291 0.67 -5.47 4.79 

Model 6 (Car Impact Speed) ² Logistic 
Equal 4645.037 1.63 1.84 -3.47 

Unequal 4626.943 0.55 -0.80 0.25 

Model 7 (Closing Speed) ² CLOGLOG 
Equal 3904.527 -2.81 0.95 1.84 

Unequal 3898.186 0.12 -3.73 3.61 
Model 8 (Closing Speed) ² Logistic Equal 3938.688 1.4 -0.64 -0.76 

Model 9 
Car Impact Speed 
and PTW Impact 

Speed 
CLOGLOG Equal 3533.046 1.48 -2.67 4.15 

 
Considering both the AIC and calculated numbers, Model 8 was chosen as the model that best fits our data. The 
equations giving the probabilities for the PTW users to be fatally, severely, and slightly injured, are then as follows 
(CS=Closing Speed, in m/s): 

𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) = 1/(1 + 𝑁𝑁𝑒𝑒𝑒𝑒�−(−6.1908 + 0.00696 ∗ 𝐶𝐶𝑆𝑆2)�)                       (2) 
𝑃𝑃(𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁) = 1/(1 + 𝑁𝑁𝑒𝑒𝑒𝑒(−(−1.847 + 0.00696 ∗ 𝐶𝐶𝑆𝑆²)))  − 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)      (3) 

            𝑃𝑃(𝑆𝑆𝐹𝐹𝑁𝑁𝑆𝑆ℎ𝐹𝐹) = 1 − 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) − 𝑃𝑃(𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁)                   (4)
 

The injury risk curves are plotted with the above equations while representing the speed axis in kph (Fig. 5). 
 

 
Fig. 5: Injury risk curves for PTW riders. 
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Effectiveness Results 
Assessing AEB effectiveness consists of comparing outcomes from the original population of accidents to the 

outcomes of their simulation with AEB in operation. Amongst all possible metrics for this assessment, we chose 
to estimate the effectiveness based on equation (5).  

 
𝐸𝐸𝑃𝑃𝐼𝐼𝐼𝐼 = 100 ∗

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

                                                                                     (5) 

 
with Einj the effectiveness for a given injury severity level, Ninjini the original number of PTW users at that injury 

severity level, and NinjAEB the number of PTW users remaining at that injury severity level after AEB simulation. 
Evaluating the expected number of casualties is based on combining injury risk curves with accident outcome 

(closing speed in the present study) distributions, for both the original and the simulated accident population. 
This enables the computation of new probabilities for the PTW users getting injured. The probability is then 
multiplied by the PTW user’s statistical weight and the sum of these products for all the sample gives the number 
of killed or injured. Only in the simulated accident population might avoided accidents (resulting in a 0 km/h 
closing speed) occur. Avoided accidents have injury probability zero, regardless of injury level. 

Effectiveness results for the three assessed sensor settings, in the three levels of injury severity, are given by 
Table VI. For the same settings, results are also given as the number of expected casualties (Fig. 6) 

 
TABLE VI 

EFFECTIVENESS RESULTS FOR VARIOUS SENSOR SETTINGS. 
Setting / Injury Fatal Severe Slight 
Single-Sensor 48% 30% 10% 

Bi-Sensor 64% 43% 21% 
Triple-Sensor 75% 54% 20% 

 

 
Fig. 6. Weighted distributions of injured PTW users before AEB simulation and after application of the three 
assessed systems 

 
In order to reach a relatively good level of effectiveness for the three accident configurations considered for 

PTW, one has to select the triple-sensor setting. This is especially true for the most severe injuries (fatal and 
severe). This is even more obvious when considering the number of powered-two-wheelers accidents avoided 
(characterised by closing speed zero by the tool):  whereas the single-sensor setting avoids one injury accident 
out of three (Fig. 7-b) in our original sample, the triple-sensor setting avoids approximately two such accidents 
out of three (Fig. 7-d). 
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The triple-sensor setting is shown to have different effectiveness values in different accident configurations (Table 
VII). It is especially effective in accidents where PTW are rear-ended by passenger cars, less so in straight crossing 
path configurations, which are often made more complex by obstacles or visibility masks – even for sensors. As 
to the left turn across path with oncoming PTW configuration, while the effectiveness is good for fatal injuries 
(70%), it is less so for severe injuries. 

 

 
Original (a) 

 
Single-sensor (b) 

 
Bi-sensor (c) 

 
Triple-sensor (d) 

Fig. 7. Weighted original (a) and simulated closing speed distributions (b), (c) and (d) for the assessed systems. 
 

TABLE VII 
EFFECTIVENESS RESULTS FOR ACCIDENT CONFIGURATIONS USED IN THIS STUDY 

Accident Configuration / Injury Fatal Severe 
Straight Crossing Paths 84% 64% 
Left Turn Across Path 70% 49% 

Rear-End 100% 71% 
 

IV. DISCUSSION 

The computation of AEB-PTW effectiveness in this study is based on injury risk curves that were developed 
using data from real car-to-PTW accidents. These curves represent the risk of being slightly, severely, and fatally 
injured, for a motorcyclist colliding with a passenger car in accident configurations where AEB could be beneficial. 
The only study found in the literature [12] predicted a 70% risk of MAIS3+ or fatal injuries at a closing speed of 
140 km/h, while in our study, such closing speed means a 99% risk for the PTW user of becoming fatally injured. 
One explanation could be that the sample selection and data filtering in the mentioned study excluded the cases 
where the most severe injury was due to the impact with the ground and not with the car. This distinction is not 
available in the VOIESUR database but could explain that the predictions in our study are more pessimistic. 

Injury risk have been modelled with car or PTW impact speed and closing speed as independent variables. 
Other crash-related variables could have an influence on the injury outcome of the PTW user, such as the angle 
and the point of impact on the passenger car. The angle between the car and the PTW just before collision is 
partly taken into account as it participates in the closing speed calculation. Location of the impact point of the 
PTW on the passenger car, such as front left, front centre, front right, is described in the VOIESUR database. 
However, because of the small sample size, the focus was made on the most influential independent variables, 
which are mainly speed variables. This makes the injury probability dependent on speed calculation errors due to 
possible unprecise input parameters. Speed error range was estimated neither in VOIESUR nor in SaferWheels. 
Lower and higher speed estimation could have respectively shifted the injury risk curves to the left and to the 
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right. A simple shift to the left or to the right of the injury risk curves would not have high influence on injury 
probability, supposing that speed reduction due to AEB is unchanged. AEB systems using single-sensor and bi-
sensor settings, even with smaller detection angle and range than what was used in the present study, were 
shown to be very effective in reducing pedestrian and cyclist injuries after a frontal collision with a passenger car 
[6][9]. This study shows that only the triple sensor based AEB system allows to keep the same level of 
effectiveness in reducing PTW users’ injuries. This setting is a steep upgrade from AEB-Pedestrian or AEB-Cyclist 
settings: sensor numbers (three instead of one or two), ranges (reaching up to 150 m) or angles (a global angle of 
240°). This is also a hint that addressing the issue of car-PTW accidents may require the development of rider 
assistance systems for PTW, as driving assistance systems for cars might not be up to the task when used alone. 

The results of this study are consistent with studies using wide sensor angle and range showing high 
effectiveness of autonomous braking systems in reducing accidents and injuries [18]. However, no study was 
found dealing with AEB effectiveness in car-to-PTW accidents. The only study [11] that estimated potential 
effectiveness of AEB-PTW systems has focused on market penetration rates and used effectiveness values from 
studies of AEB effectiveness in car-to-car accidents. 

One important aspect of the results is the fact that the various systems show less effectiveness for less severe 
injuries. For less sophisticated sensor systems, this could be due to the motorcycle staying out of sensor field of 
view, especially when the car speed is lower than motorcycle speed in the SCP and LTAP/OD accident 
configurations. The same tendency, but with lower effect, was also noticed when dealing with AEB-cyclist 
effectiveness [9], but not with AEB-pedestrian effectiveness [6], as pedestrian speeds would always be very low, 
when compared with car speeds before impact. Another explanation for the lower effectiveness for slight injuries 
is the fact that many of the mitigated fatal and severe injuries would be transformed to slight injuries. This is 
mostly noticed in the left turn across path configuration, for which the authors noticed that almost none of the 
slight injury accidents were avoided. The explanation for this is as follows: in most turn across path accidents, the 
AEB equipped simulated vehicle still stops across the original PTW’s path. If closing speeds are sufficiently high 
(as in accidents with severe injury outcomes), it is of no consequence, as the AEB equipped vehicle’s braking 
allows the PTW to sweep across and avoid the collision. If closing speeds are low (as in accidents with slight injury 
outcomes), the collision still occurs, but at a different spot on the vehicle and almost invariably when the vehicle 
has already come to a halt. This is caused by the simulation retaining the original reconstructed PTW trajectory. 
In real-life, however, PTW travelling at low speeds may have more time or more space to swerve aside when 
facing the AEB equipped vehicles that are in the process of slowing down themselves, and thus avoid the collision. 
This would cause the results presented in this paper to be overly pessimistic for these specific accidents 
configurations (left turn across path, slight injury accident) and also explains why there is no obvious difference 
between the bi-sensor and the triple-sensor configuration for slight injuries. To be more realistic and capture this 
effect, a model of the PTW rider reaction would be needed: this is beyond the scope of the present study but is a 
very interesting way of progress for future works.  

While the AEB-PTW with a triple-sensor setting showed relatively good effectiveness for all accident 
configurations combined, it appeared to be less efficient in the left turn across path with oncoming PTW. One 
explanation for this result is the fact that the closing speeds in this accident configuration would be mostly due 
to the PTW speed and not to that of the car that is undertaking a left turn manoeuvre. Thus, even if the AEB was 
able to completely stop the car, it will not enable high mitigation of PTW users’ injury due to the low reduction of 
relative speed. One solution to mitigate more injuries in this kind of accident configuration could be the use of 
AEB systems for motorcycles as was investigated in a study [19]. 

One limitation of the present study is the low sample of slight injury accidents. The PTW users involved in these 
accidents were given high weight values, thus making effectiveness results very sensible to a small variation in 
this sample. Another limitation is that nominal system design was supposed without taking into account 
parameters like system failure due to lack of maintenance. The system was supposed to detect the PTW a certain 
time after it enters the field of view, while in real life situations false negatives can happen, meaning that the 
system would not identify the PTW even though it was in the sensor’s field of view. Furthermore, vehicles 
equipped with AEB are also equipped with forward collision warning (FCW) systems. These systems are designed 
to warn the driver about an impending collision. When simulating the effect of AEB in this study, the authors did 
not take into account the effect of FCW systems combined to the effect of AEB. Modeling FCW systems’ effect 
would require modelling of driver behaviour due to the warning. 

The authors would also like to underline that the present study may not be transposable to a context where 
no regulations on helmets exist (injury risk curves may be very different in such a context). In the sample of 
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accidents used in this study, all PTW users were wearing helmets. 

V. CONCLUSIONS  

This is the first study that highlights the potential effectiveness of AEB systems in car-to-PTW accidents. It 
shows optimistic results, taking into account nominal system settings and sophisticated sensor features. This is 
also one of the first studies to build injury risk curves for PTW users and use them to assess AEB-PTW effectiveness 
in car-to-PTW crashes. In the selected array of use cases, AEB-PTW was shown to effectively reduce fatal and 
severe injuries in the selected use cases, at the cost of a steep upgrade of AEB sensor settings, as compared to 
other types of AEB. 
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