
Abstract  An Injury Severity Prediction (ISP) algorithm was developed using a logistic regression model to 
predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. NASS-CDS (1999-2015) and model 
year 2000 or later were filters for new case selection criteria, which were based on vehicle body type, to match 
Subaru vehicle categories. In order to model the effect of PDOF (Principal Direction of Force) as a continuous 
curve, an analytical method called functional data analysis was employed to create a model of the PDOF curve 
with two different knot positions (ISP-f1R, ISP-f2R) defined for the periodic basis splines. The most significant 
variable identified in the current analysis was “Delta V”. “Left impact” was high risk compared to other impact 
directions in the models. “Belt use” shows a significant risk in the model and belt use was safer than unbelted for 
any impact direction. “Age” was a significant occupant variable in both models and the presence of a female was 
notable but not selected in the models. When a right-front passenger was present, the effect on side impact (far-
side) injury risk is larger than without a right-front passenger. To evaluate model performance, five-fold cross-
validation was performed within the training data (NASS-CDS 1999-2015). The area under the receiver operator 
characteristic curve (AUCs) was used as the metric to evaluate model performances, AUC was 0.847 with the ISP-
f1R model, 0.856 with the ISP-f2R model for cross-validation. This study utilizes the field triage of crash subjects 
and also evaluates the baseline vehicle safety performance of a representative Subaru vehicle categories in real-
world crashes.  
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I. INTRODUCTION

With the evolution of automotive telematics technology, Advanced Automatic Collision Notification (AACN), 
which predicts the severity of a traffic accident and determines the occupants who may have been injured, was 
expected to not only shorten the time to start treatment for patients, but also have a positive effect on healing 
after treatment [1]. According to a report by the Centers for Disease Control and Prevention (CDC) Field Triage 
Task Force [2], the triage process of consists of four steps (Physiologic, Anatomic, Mechanistic, Special 
Consideration), and of the third Mechanistic, predicting severity based on data transmitted by telematics was the 
effective method for appropriate triage during emergency medical care. It is recommended that an injury be 
considered severe when the likelihood of receiving an ISS (Injury Severity Score) [3] ≥ 15 is 20% or greater. 
Although there were many ways (e.g., Maximum Abbreviated Injury Scale (MAIS)[4], ISS) to dichotomize injury 
severity, the National Expert Panel in Field Triage chose ISS 15 as its partition when its on-scene triage decision 
scheme [2]. 

Prediction of injury severity for automobile occupants has been conducted since around 2000 in the U.S., and 
various studies [4-7] have been conducted. Kononen et al. [8] used information from the National Automotive 
Sampling System Crashworthiness Data System (NASS-CDS; 1999-2008) [9] to develop a vehicle-level Injury 
Severity Prediction (hereinafter referred to as ISP) model. Here, by identifying predictors that affect occupant 
severity, ISPs using each factor were calculated and applied to practical use as GM OnStar service. Later, ISP was 
improved by Wang et al. [10], who proposed a method to replace the direction of impact with a continuous 
function using the Principle Direction of Force (hereafter referred to as PDOF). These models were for all vehicle 
body types (Car, Utility, Pickup, Van) registered in NASS-CDS and were not limited to Subaru vehicles. 

In this study, we attempted to construct an injury severity prediction algorithm for Subaru vehicles in the United 
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States. Specifically, we focused on the vehicle category to which Subaru vehicles belong as the target vehicle 
category and conducted a logistics regression analysis based on NASS-CDS data to develop a new ISP model. The 
algorithm uses the latest accident data, NASS-CDS (1999-2015), which we believe provides a baseline for the 
safety performance of vehicles in real-world accidents as well as post-crash safety (including emergency 
medicine) by AACN. By continuously improving this injury severity prediction algorithm, we believe it will play a 
role toward "Zero” fatal traffic accidents as one of the pillars of a safe traffic system. 

 
 

II. METHODS 

Sample Data (NASS-CDS) 
From a practical perspective, the variables used in the algorithm were selected from NASS-CDS based on 

information transmitted by vehicle telematics, i.e., information obtained from the EDR (Event Data Recorder). 
The reason for setting constraints on the variables in this way was to reflect the current state of information 
obtained by the current vehicle telematics systems. 

NASS-CDS (1999-2015) and model year 2000 or later were filtered with new case selection criteria, which 
were based on vehicle body type, to match Subaru vehicle categories. Counting 1999-2015 data, since 1999 
data has some model year 2000 cars. That was the reason we have included year 1999. In order to deal with 
limited sample sizes when focusing on Subaru-make vehicles only, we expanded our scope to investigate the 
vehicle belong to Subaru vehicle categories. The vehicle category was defined by limiting the study cohort to 
only the vehicle types recently produced by Subaru. We used the NHTSA standard definitions of passenger cars 
and sport utility vehicles (SUVs) as defined in the NASS-CDS coding [11]. The cohort was selected using the 
following specific vehicle codes: 02, 04, 05, and 06 are passenger cars and 14, and 15 are SUVs (Table 1).  
 

Table 1 Selected body type from NASS-CDS 

  
 
An additional inclusion criterion for the current study was the principal direction of force (PDOF) was known. To 
model the effect from PDOF as a continuous curve, we employed the statistical analysis called functional data 
analysis, where we used cyclic basis splines to model the PDOF curve. The occurrence of two or more significant 
impacts on a single vehicle was a potentially important explanatory variable in predicting injury outcomes. 
Vehicles that experienced multiple impacts and vehicles that experienced a single impact were identified from 
the NASS-CDS. Vehicles that sustained a non-horizontal event, such as a rollover, were excluded. As written in 
Kononen’s paper, the number of occupants does not matter because it is the vehicle level at which vehicles 
involved in a crash are most likely to contain a seriously injured occupant. The occupant and injury parameters 
were based on the following criteria. Belt status was available as “all occupants belted” vs. “at least one occupant 
unbelted” and did not consider the belt status of rear-seat passengers because current Event Data Recorders 
(EDRs) might not sense presence of rear-seat occupants. We chose the presence of an older occupant if anyone 
in the vehicle was 55 or older [8], and “under 55” if all occupants were under 55. Similarly, the presence of a 
female occupant was at the vehicle level if any occupant was female and “all male” if all occupants were male. 
Injury Severity Score (ISS), [2] defined as sum of the squares of the Abbreviated Injury Scale (AIS) [12] of the three 
most significantly injured body regions, were available. The ISP model was designed to predict ISS at the crash 
involved vehicles. We chose highest ISS among the any of occupants. Following these selection criteria, the total 
number of crash case involving vehicle was 7,351. There was a weighting factor in the NASS‐CDS, and it estimated 
the total number of similar crashes in the entire U.S. To be statistically sound, we used weighted data. NHTSA has 

NASS-CDS
Code

Body type SUBARU Category

02 2-Door Sedan/Hardtop/Coupe
04 4-Door Sedan/Hardtop
05 4-/5-Door Hatchbak
06 Station Wangon
14 Compact Utility
15 Large Utility

Car

Utility

Select body type from NASS-CDS
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limited resources to cover the entire nationwide crash data and can only investigate limited cases. Therefore, 
they purposely investigate more severe cases and created a bias towards more severe cases. The total number of 
weighted data was 1,645,762 (median weights = 75). 
 

Functional Data Analysis  
Kononen et al. [8] developed the algorithm which uses crash and occupant factors to predict whether anyone 

in the vehicle has significant probability of sustaining a severe injury. This algorithm was later updated to an 
algorithm [13] based on NASS-CDS data through calendar year 2013. In order to model the effect from PDOF as 
a continuous curve, we employed the statistical analysis called functional data analysis [10], where we used 
cyclic basis splines to model the PDOF curve. The number of basis splines (so called degree of freedom) was 
important here. The more splines one can use, the finer result of the PDOF curve one can obtain. In comparison, 
Kononen’s model where we used four direction of impact (Front, Left, Right, Rear) to summarize impact 
directions, the degree of freedom (DOF) was three. In addition, the study of the effect of a right-front passenger 
[10] with respect to injury risk showed that the effect of PDOF on injury risk changed significantly when a right-
front passenger was present, and this trend was more pronounced in the case of side impact. 

In this study, ISP algorithms based on functional data analysis which consider the effect of right-front 
passenger were developed using a logistic regression model to predict the probability of sustaining ISS 15 + 
injury. 

1. ISP-f1R: Functional data analysis using PDOF and select knots based on quantile. 
2. ISP-f2R: Functional data analysis using PDOF and select knots based on direction of impact. 
 

The only difference between the ISP-f1R and ISP-f2R model were the knots, which selected basically result in 
"shift" of basis curves to make them focus on certain regions. Traditionally, we choose knots where you have 
more data points i.e. according to quantiles of data. In ISP-f2R, we forced the knots at 90, 180, 270 degrees, 
since we know those are potential transition points.  

The stepwise procedure was used to select a subset of more relevant features to construct the final ISP 
algorithm. The concept of using a statistical approach was to predict a 20% probability of ISS 15 or greater and 
the importance of each variable defined within a predictive model. Logistic regression models were fitted to 
investigate ISS 15 or greater injury with different configurations of the variables which was defined Table 2. In 
this study, the ISP algorithm using the NASS‐CDS, was developed as the basis to predict injury. The logistic 
regression equation was as follows: 

 

𝑃𝑃(𝐼𝐼𝐼𝐼𝐼𝐼 15 +) =
1
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                                                                                   (2) 

 
where P (ISS 15+) is the probability that the ISS is 15 or greater (considered to be a serious injury level), β0 was 
the intercept, βi were the coefficients of the predictors xi, and n is the number of predictors. These predictors 
were shown in Table 2. It is necessary to have a cutoff value for P (ISS 15+). The CDC Expert panel’s 
recommendations for development of an injury risk algorithm specified a probability cutoff value of 0.2 using 
Injury Severity Score (ISS). In another word, probability of 0.2 was defined as a serious injury at the crashes. In 
this study, this cutoff value was used with P (ISS 15+). 
 
A forward and backward stepwise variable selection method was used to select the optimal model in the logistic 
regression analysis. The Akaike's Information Criteria (AIC) was used as the criterion for selecting (adding or 
deleting) one variable in each step, and the best model was the combination of variables with the lowest value. 
Note that AIC is an information criterion that expresses the relationship (trade-off) between the goodness of fit 
of the data and the complexity of the model, and has the effect of suppressing overfitting when the model has 
many variables (overfitting). The performance of the obtained model was indicated by the sensitivity and 
specificity, and the model was evaluated based on the Area Under Curve (AUC), which was calculated from the 
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area surrounded by the Receiver Operating Characteristic (ROC) curve, which was expressed based on these 
relationships. Statistical analysis was performed using R 4.1.1 with the Survey, pbs, and MASS packages.  
 

Table 2 Predictor variables used in models that are able to be obtained using EDR (Event Data Recorder) in a 
crash, or by an operator communicating with the vehicle belong to Subaru category. 

  
 

Validation 
Five-fold Cross Validation [6] was used to validate the model prediction performance. As shown in Figure 1, D1, 

D2, D3, D4, and D5 are the five equal parts of NASS-CDS (1999-2015). The model is created using D1, D2, D3, and 
D4, and the performance is verified using D5. This process is repeated for D1, D2, D3, D5; D1, D2, D4, D5; D1, D3, 
D4, D5; D2, D3, D4, D5; and for each of D4, D3, D2 and D1. The model was evaluated by taking the arithmetic 
mean of the values obtained from each validation result (D1, D2, D3, D4, D5) as shown Figure 1. 
 

 
Figure. 1 Five-fold cross-validation. 

 

III. RESULTS  

Comparison of injury severity score 
Table 3 shows the relationship between each predictor and severity (ISS 15+ vs. ISS 15-) obtained from the 

NASS-CDS (1999-2015). The numbers in parentheses indicate the mean value for delta V and the standard 
deviation for the others. For both vehicles, the proportion of frontal collisions was high, and in particular, the 
proportion of side impact from the left and right was high for ISS 15+. In terms of vehicle body type, there is no 
significant difference between the two groups, indicating that the proportion of Car (passenger cars) was high. 
For multiple events, the ISS 15+ tended to have a higher percentage. The percentage of wearing seat belts was 
higher for ISS 15-. On the other hand, the proportion of right-front passengers was higher in ISS 15+ than in ISS  
15-, and the proportion of elderly was higher in ISS 15+ than in ISS 15-. There was no significant difference in 
gender between the two groups. 
 

Variables Categories

Delta V (mph) Change in velocity (logarithm of Delta V)

Direction of impact PDOF (0 to 350 degree in 10-degree increment)

Vehicle  Type Car, Utility (MY 2000 and new car)

Number of Events Single, Multiple 

Belt Use Belted, Unbelted

Right-front Passenger Presence of right-front passenger 

Age At least one greater than 55 years 

Gender At least one female
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Table 3 Means and standard deviations of key variables stratified by ISS 15+ vs. ISS 15-. (SD). 

  
 

Logistic regression analysis using the target vehicles defined in the previous chapter was performed to create 
the ISP, and the contribution to each predictor was determined. Table 4-5 shows the results of the logistics 
regression model (ISP-f1R, ISP-f2R) using the stepwise variable selection method including the coefficient, 
standard error, and p-value for each variable. The most significant variable in the analysis was delta V. The PDOF 
was approximated by four cyclic curves (C1, C2, C3, C4) obtained from the functional data analysis. By cyclic, it 
meant values at 0 and 360 were equal, since they correspond to the same direction. Number of curves (4 here) 
was the degree of the freedom. We basically used the combination of these four curves to approximate the 
PDOF effect. Those coefficients were determined by "fitting" the model and we therefore tried to find the best 
combination which was close to the truth. The belt use was significantly different in both models, indicating that 
wearing a seat belt was safer than not wearing a seat belt. Among the factors related to the occupants, age was 
the most important factor, with a significant difference of p=0.009 and p=0.010 in both models, respectively. On 
the other hand, gender was not selected as a predictor, and the selection of variables by AIC was a necessary 
factor to improve the accuracy of the model, although some variables were not significantly different for some 
items. 
 

Figure 2-3 shows the results for the ISP-f1R case with only the driver's seat occupant and ISP-f2R case with 
the right-front passenger in the vehicle, by crash direction (PDOF: 0 deg. (Front), 90 deg. (Right), 180 deg. 
(Rear), 270 deg. (Left)). The dotted line represents the confidence interval. Other variables were fixed at all 
occupants belted, car, single impact, and no older occupants. Figure 2(a) shows the ISP-f1R case with only the 
driver's seat occupant with the highest risk for left-side impact (red), followed by right-side (yellow), rear 
(black), and front impact (blue). Compared to Kononen's model, the risk curves were higher overall (Frontal, 
Left, Right, Rear), and the risk curve for rear impact was higher than that for frontal impact. Figure 2(b) shows 
the ISP-f1R case with a right-front passenger. Compared to the driver-only case in Figure 2(a), all risk curves 
(Frontal, Right, and Rear) were higher when there was a passenger on the right-front passenger, except for the 
left side impact. Figure 3(a) shows the ISP-f2R case with only the driver's seat occupant, with the highest risk for 
left-side impact (red), followed by right-side (yellow), front (blue), and rear impact (black). In the case of the 
driver seat occupant alone, the risk curve for rear impact tended to be close to that of frontal impact. On the 
other hand, Figure 3(b), which considered the effect of the right-front passenger, shows a higher risk curves 
compared to Figure 3(a), except for the left-side impact. 
 

Table 4. Estimation of coefficients and their standard Table 5. Estimation of coefficients and their standard 

Variables ISS 15+ ISS 15-
Delta V (mph) 29.0 (0.5) 20.4 (0.1)

Front: 55.3% (3.0%) Front: 72.1% (1.2%)
Left: 23.0% (2.9%) Left: 7.1% (0.8%)

Right: 17.8% (2.1%) Right: 9.6% (0.8%)
Rear: 3.9% (2.2%) Rear: 11.3% (0.5%)

Car: 84.5% (1.4%) Car: 79.7% (1.1%)
Utility: 15.5% (1.4%) Utility: 20.3% (1.1%)

Number of Multiple Events 65.8% (2.4%) 54.1% (2.0%)

Seatbelt usage 63.3% (2.5%) 84.1% (2.4%)

Presence of right-front passenger 38.5% (4.6%) 21.6% (1.4%)

Presence of passengers older than 55 years old 39.3% (3.9%) 17.5% (1.0%)

Presence of female passengers 64.8% (3.2%) 60.6% (1.6%)

Direction of impact

Vehicle type
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error and p-value for variables from the ISP-f1R 
model. 

error and p-value for variables from the ISP-f2R 
model. 

  
 
 

  
PODF=0 deg. (Front)  PODF=0 deg. (Front) 

  
PODF=90 deg. (Right) PODF=90 deg. Right 

Parameters Estimate Std.
Error t value Pr(>|t|)

Intercept -13.842 1.094 -12.647 0.006
ln Delta-V (mph) 4.229 0.329 12.866 0.006

C1 -5.642 1.510 -3.736 0.065
C2 1.969 0.576 3.421 0.076
C3 -2.989 0.317 -9.437 0.011
C4 -2.588 0.327 -7.914 0.016

Belted -1.283 0.196 -6.538 0.023
Unbelted 0.000

Utility -0.499 0.150 -3.327 0.080
Car 0.000

Multiple 0.351 0.166 2.117 0.169
Single 0.000

55 or greater 1.517 0.142 10.695 0.009
under 55 0.000

C1 2.222 1.201 1.850 0.205
C2 -1.138 0.574 -1.982 0.186
C3 1.322 0.767 1.724 0.227
C4 0.495 0.245 2.019 0.181

Presence of right-
front passenger

PDOF

Number of events

Belt use

Vehicle type

Presence of older
occupants

Parameters Estimate Std.
Error

t value Pr(>|t|)

Intercept -12.754 1.016 -12.554 0.006
ln Delta-V (mph) 4.171 0.313 13.308 0.006

C1 -6.076 1.566 -3.881 0.060
C2 1.347 0.427 3.154 0.088
C3 -3.238 0.281 -11.518 0.007
C4 -3.908 0.373 -10.481 0.009

Belted -1.256 0.192 -6.541 0.023
Unbelted 0.000

Utility -0.472 0.153 -3.095 0.090
Car 0.000

Multiple 0.356 0.183 1.945 0.191
Single 0.000

55 or greater 1.534 0.157 9.787 0.010
under 55 0.000

C1 1.026 1.292 0.794 0.510
C2 -0.220 0.787 -0.280 0.806
C3 0.519 0.677 0.767 0.523
C4 1.123 0.375 2.994 0.096

Presence of
right-front
passenger

PDOF

Belt use

Vehicle type

Number of
events

Presence of older
occupants
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PODF=180 deg. (Rear) PODF=180 deg. (Rear) 

  
PODF=270 deg. (Left) PODF=270 deg. (Left) 

(a) Driver only (b) Driver with a right-front passenger 
Figure 2 Result of risk prediction curve using ISP-f1R. The figure showed the injury risk curve for four impact 
directions: front (blue), left (red), right (yellow), and rear (black). 

 
 

  
PODF=0 deg. (Front) PODF=0 deg. (Front) 
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PODF=90 deg. (Right) PODF=90 deg. (Right) 

  
PODF=180 deg. (Rear) PODF=180 deg. (Rear) 

  
PODF=270 deg. (Left) PODF=270 deg. (Left) 

(a) Driver only (b) Driver with a right-front passenger 
Figure 3 Result of risk prediction curve using ISP-f2R. The figure showed the injury risk curve for four impact 
directions: front (blue), left (red), right (yellow), and rear (black). 

 
The results of the five-fold cross-validation using the ISP-f1R and ISP-f2R models were shown in Table 6-7, and 
the sensitivity and specificity of the ISP models when the cutoff values were varied from 0.10, 0.15, 0.20, 0.25, 
and 0.30. The area under the receiver operator characteristic curve (AUCs) was used as the metric to evaluate 
model performances, which was 0.847 for the ISP-f1R model and 0.856 for the ISP-f2R model for the cross-
validation, respectively. 
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Table 6 Comparison of sensitivity and specificity with 
the five-fold cross-validation with the ISP-f1R model. 

Table 7 Comparison of sensitivity and specificity with 
the five-fold cross-validation with the ISP-f2R model. 

  
 

IV. DISCUSSION 

Injury severity prediction models were developed using NASS-CDS (1999-2015). The model showed a higher 
risk curves than the risk curves proposed by Kononen et al. [8] for each direction of impact. The main reason for 
this difference was due to the “Body Type” selected from NASS-CDS (1999-2015). While Kononen used Car 
(Code: 0-9) and Utility (Code; 14-19) as body types, the current analysis uses Car (Code. 2-4, 6) and Utility (Code; 
14-15) as belonging to the Subaru vehicle categories were selected. Subaru vehicles were relatively small or 
medium-sized, and the difference in vehicle weight was considered to have resulted in a higher risk curve. 
Generally, in a crash between vehicles, the heavier vehicle will push the lighter vehicle out of the way, resulting 
in a large impact force more on the people in the lighter vehicle [14]. Although the vehicle body structure 
absorbs energy and mitigates the impact to the occupants [15], the selection of a relatively light vehicle (small 
or medium-sized) for the vehicle may have resulted in a higher risk curve due to the weight of the vehicle. 

As shown in Figure 2, the ISP-f1R risk curve for rear impact was higher than that for front impact. This was 
due to the ISP-f1R's quantile-based knot positioning. As shown in Table 3, the data used in this analysis was 
biased toward frontal impact, and the number of rear impact was small, which might be a reason why the 
feature values could not be reflected accurately. In addition, about 70% of rear impacts occur at less than 15 
mph[16], which may have been excluded from the scope of our analysis. Although rear impacts are considered 
unlikely to cause fatalities, they are extremely hazardous once they occur, depending on the severity of the 
collision and the severity of the injuries being investigated. Further collection of data on rear impacts is needed 
to investigate the relationship between Delta V and severity of injuries. 
 

On the other hand, ISP-f2R with the knot position set to 90, 180, and 270 degrees produced the risk curve by 
capturing the rear impact feature, indicating that the risk of rear impact was the smallest compared to the other 
three directions. However, as can be seen from the ISP-f2R risk curves, there were limitations in developing the 
model using approximately 7,000 data points, and it was not possible to set the degree of freedom to more 
than 5. Ended up using DOF = 4, which was smaller than the DOF (=10) of Wang et al[10]. In addition, Kononen 
et al.[8] modeled by direction of impact (DOF=3), and the results of current analysis did not fully demonstrate 
the advantages of functional data analysis. 

As shown in Figure 2(b) and Figure 3(b), a new severity risk term was added when a passenger was on board, 
as indicated by the logistic regression analysis results (Table 4-5). The effect of the right-front passenger was 
evident in the risk curves for frontal, right-side, and rear impact, with the exception of the left-side impact. 
This result indicated that ISP-f2R can distinguish differences in severity risk with and without a right-front 
passenger. As for the effect of the right-front passenger on the left side impact, it was found that the presence 
or absence of the passenger seat occupant did not make a significant difference, as shown by Ejima et al. [17], 
and the same results were obtained. 

Five-fold cross-validation using NASS-CDS (1999-2015) showed that the ISP-f1R model performed with a 
sensitivity of 38.9% and specificity of 96.8% with a cutoff value of 0.2, and the accuracy of the model was 
evaluated with an AUC of 0.847. On the other hands, the ISP-f2R model performed with a sensitivity of 40.6% 
and specificity of 96.7% with a cutoff value of 0.2, and the accuracy of the model was evaluated with an AUC of 
0.856. As shown in Table 8, the sensitivity and specificity of the model by Kononen et al. [8] were 39.6% and 
98.3%, respectively, and the results were similar to those of Kononen’s model. The main problem we see from 
the Kononen's model is that the model is driver-centric, but it tries to predict the severe injury risk of the whole 
car. In the side-impact scenario, however, presence of additional right-front passenger would greatly change 
the injury risk of the while car. By incorporating the interaction between right-front passenger and impact 
direction, we can effectively address the issue above. The U.S. Centers for Disease Control and Prevention's 

cutoffs sensitivity specificity
0.10 0.581 0.906
0.15 0.461 0.945
0.20 0.389 0.968
0.25 0.349 0.979
0.30 0.316 0.984

cutoffs sensitivity specificity
0.10 0.579 0.899
0.15 0.474 0.946
0.20 0.406 0.967
0.25 0.360 0.977
0.30 0.320 0.983
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Specialty Council on Field Triage recommends an acceptable range of 0-5% and 25-50% for under-triage (1-
Sensitivity) and over-triage (1-Specificity), respectively. Sensitivity and specificity were in a trade-off 
relationship, and it is important to balance sensitivity and specificity in setting cutoff values, and it is necessary 
to discuss appropriate triage decisions based on field data. 
 

Table 8 Summary of the specificity, sensitivity and AUC of the models (cutoff value of 0.2) 

 
 
Limitations 

Delta V is an important variable among the information obtained from the vehicles in this algorithm and is 
calculated in a computer model (WinSmash) based upon the detailed vehicle crash measurements obtained by 
the crash investigators in the NASS-CDS database. On the other hand, Delta V obtained from telematics (EDR) is 
calculated from the lateral and longitudinal components of Delta V and is also used to calculate the PDOF. 
Differences can be observed between the two, and the Delta V from WinSmash is often underestimated 
compared to telematics, which should be taken into account when verifying accuracy using field data. 

This algorithm was a model that selects vehicle categories and could predict severity at the vehicle level; as 
described in the paper by Kononen et al. [8], a model at the occupant level was needed to improve the accuracy 
of the injury severity prediction algorithm. At the scene of an actual traffic accident, it is assumed that telematics 
in the car will make the call and treat the patient in cooperation with the emergency services. To properly triage 
the injured, it is necessary to collect information on each passenger (Driver, Right-front passenger, and rear 
seated occupants). In the future, we plan to study the possibility of extending the algorithm to the severity 
prediction algorithm at the occupant level. 

In addition, the NASS-CDS used in this analysis was based on data from 1999-2015, which may differ from 
current vehicles, and therefore validation with field data is necessary. 

V. CONCLUSIONS  

 
In this study, the Subaru vehicle categories were selected as vehicle body types from the NASS-CDS, and an 

algorithm for predicting occupant injury severity was developed by applying functional data analysis. According 
to the guidelines of the Centers for Disease Control and Prevention's Expert Committee on Field Triage, the ISP-
f1R model showed 38.9% sensitivity and 96.8% specificity, and the ISP-f2R model showed 40.6% sensitivity and 
96.7% specificity when cutoff value was 0.20. The area under the receiver operator characteristic curve (AUCs) 
was used as the metric to evaluate model performances of models, which was 0.847 for the ISP-f1R model and 
0.856 for the ISP-f2R model, which was an improvement compared to Kononen’s model. The main predictors 
were delta V, seat belt use, and age, and the influence of the right-front passenger during right-side impact was 
also significant. These models need to be continuously improved by collecting the crash data. 

 

VI. REFERENCES  

[1] MacKenzie, EJ., Rivara, FP., Jurkovich, GJ., et al. A national evaluation of the effect of trauma-center care on 
mortality. The New England Journal of Medicine, 354:366–378. 2006. 

[2] Sasser, SM., Hunt, RC., Sullivent, EE., et al. Guidelines for field triage of injured patients: recommendations 
of the National Expert Panel on Field Triage., MMWR Morbidity and mortality weekly report, 58:1–35. 2009. 

[3] Baker, SP., O’Neill, B., Haddon, WJr., Long, WB., The injury severity score: a method for describing patients 
with multiple injuries and evaluating emergency care. Journal of Trauma.14:187–196. 1974. 

[4] Bahouth, GT., Digges, KH., Bedewi, NE,. et al. Development of URGENCY2.1 for the prediction of crash injury 
severity. Top Emergency Medicine. 26:157–165. 2004. 

[5] Ayoung-Chee, P,, Mack, CD., Kaufman, R., Bulger, E., Predicting severe injury using vehicle telemetry data. 
Journal Trauma Acute Care Surgery. 74, 190–194; discussion 4–5. 2013. 

Sensitivity Specificity AUC
Kononen et al.[8] 0.396 0.983 0.843

ISP f1R 0.389 0.968 0.847
ISP f2R 0.406 0.967 0.856

IRC-22-11 IRCOBI conference 2022

31



[6] Kusano, KD., Gabler, HC., Comparison and Validation of Injury Risk Classifiers for Advanced Automated 
Crash Notification Systems. Traffic Injury Prevention, 15, S126–S133, 2014. 

[7] McMurry, TL., Cormier, JM., Daniel, T., et al. An omni-directional model of injury risk in planar crashes with 
application for autonomous vehicles. Traffic Injury Prevention, DOI: 10.1080/15389588.2021.1955108, 
2021. 

[8] Kononen, DW., Flannagan, CA., Wang, SC., Identification and validation of a logistic regression model for 
predicting serious injuries associated with motor vehicle crashes. Accident Analysis and Prevention, 43:112–
122. 2011. 

[9] National Highway Traffic Safety Administration. National Automotive Sampling System. Washington, DC: 
National Highway Traffic Safety Administration; Available at: https://www.nhtsa.gov/crash-data-
systems/national-automotive-sampling-system. Accessed May 15, 2020. 

[10] Wang, SC., Kohoyda-Inglis, CJ. et al., Second Generation Aacn Injury Severity Prediction Algorithm: 
Development and Real-World Validation. 25th International Technical Conference on the Enhanced Safety of 
Vehicles (ESV), Detroit, United State. Paper Number: 17-0133-O, 2017. 

[11] National Highway Traffic Safety Administration, National Automotive Sampling System (NASS) 
Crashworthiness Data System Analytical User’s Manual 2007 File. National Center for Statistics and Analysis, 
NHTSA, U.S. Department of Transportation, Washington, DC. 

[12] Association for the Advancement of Automotive Medicine. “Abbreviated Injury Scale (AIS)”: Available at: 
https://www.aaam.org /abbreviated-injury-scale-ais/. Accessed May 1, 2020. 

[13] Wang SC., Kohoyda-Inglis, CJ. et al. Results of First Field Test of Telemetry Based Injury Severity Prediction.  
24th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Gothenburg, Sweden. 
Paper Number: 15-0388-O, 2015. 

[14] The Insurance Institute for Highway Safety (IIHS). Vehicle size and weight. 
https://www.iihs.org/topics/vehicle-size-and-weight#how-size-and-weight-affect-safety. Accessed Oct. 12, 
2021. 

[15] Teoh, RE., Nolan, JM., Is Passenger Vehicle Incompatibility Still a Problem? Traffic Injury Prevention, 13:585–
591, 2012. 

[16] Parentreau, C., Why Rear Crash Safety Is Not That Simple, https://www.exponent.com/~/media/knowledge 
/thought-leadership/2020/01/why-rear-crash-safety-is-not-that-simple/tl_why-rear-crash-safety-is-not-
that-simple.pdf. Accessed June 1, 2022. 

[17] Ejima, S., Goto, T., Zhang, P., Cunningham, K., and Wang, S., Injury Severity Prediction Algorithm based on 
Select vehicle Category for Advaced Automatic Collision Notification, SAE Technical Paper 2022-01-0834, 
2022, doi:10.4271/2022-01-0834.  

IRC-22-11 IRCOBI conference 2022

32

http://www-esv.nhtsa.dot.gov/Proceedings/25/25ESV-000133.pdf
http://www-esv.nhtsa.dot.gov/Proceedings/25/25ESV-000133.pdf
https://www.exponent.com/%7E/media/knowledge%20/
https://www.exponent.com/%7E/media/knowledge%20/
https://www.sae.org/publications/technical-papers/content/2022-01-0834/
https://www.sae.org/publications/technical-papers/content/2022-01-0834/
https://www.sae.org/publications/technical-papers/content/2022-01-0834/

	I. INTRODUCTION
	II. METHODS
	Sample Data (NASS-CDS)
	Functional Data Analysis
	Validation

	III. RESULTS
	Comparison of injury severity score

	IV. Discussion
	V. conclusions
	VI. References



