
  

 
 Abstract It is well known that model-based brain injury criteria present higher potential to predict 

injury than global head kinematic parameters. Numerical head injury prediction tools are time consuming and 
require FE-skilled users. To address these difficulties, we suggest applying deep learning techniques to an existing 
brain FE model. A total of 3,754 head impacts coming from experimental helmet testing were considered as input 
for the analysis. Each input was expressed in terms of three linear accelerations and three angular velocities 
versus time, when the target metric was the maximum Von Mises Stress (VMS) computed within the brain via the 
FE analysis. 

The architecture used for the Deep Learning Model (DLM) was the U-Net. The dataset was split into three 
datasets dedicated for learning and testing. The quality of the DLM was assessed via the Maximum Absolute Error 
between FEM- and DLM-computed brain maximum VMS. Further, a regression analysis of brain response and 
injury risk estimated with both methods was conducted. Results showed that the learning process of the network 
worked adequately and that deep learning techniques were applicable to predict brain response, without any FE 
analysis, in a realistic way by considering the 6D head kinematic vs time. 
 
 Keywords Deep Learning, U-Net architecture, Brain injury, Von Mises Stress. 
 

I. INTRODUCTION 

The evaluation and optimization of head protection systems in both automotive and helmet industries require 
human head surrogates and adequate head injury prediction metrics. Since the 1970s, dummy heads and 
headforms have been used for these purposes, associated to their linear acceleration via the maximum value or 
the Head Injury Criteria (HIC). As it is well accepted since Holbourn (1945) [1] that the visco-elastic brain material 
is extremely sensitive to head rotational loading, Takhounts et al. (2013) [2] suggested Brain Injury Criteria (BrIC) 
metric, followed by Universal Brain Injury Criteria (UBric) metric [3] and, more recently, DAMAGE metric [4], 
among others. In order to consider tissue-level brain injury criteria that take into account the six dimensions time 
evolution of a complex head loading as well as the complex brain geometry and time dependent constitutive law, 
model-based brain injury criteria have been developed and applied in research as well as in industrial context.  

Among them, KTH [5], THUMS [6], WSU [7, 8], DHIM [9], GHBMC [10] and SUFEHM [11] FE head models are 
known to be extensively used for the simulation of road accidents and sport accidents in order to derive model-
based brain injury criteria. Even if these kinds of criteria are still open to debate and harmonization efforts, the 
so-called “experimental versus numerical” test method is increasingly applied. This approach consists by 
considering the experimental 6D time evolution of the dummy head or headform kinematic as the input of the 
head impact FE simulation by applying the head kinematic field to the skull considered as non-deformable for a 
given range of impacts. This method has been applied to the assessment of bike helmets [12, 13], hockey helmets 
[14], motorcycle helmets [15] and equestrian helmets [16]. Since 2018 it has also been considered for the 
monitoring of brain injury risk within Euro NCAP [17]. 

It is well known and accepted that Head FE Models may give access to tissue-level injury metrics when 
Anthropomorphic Test Devices (ATD) lead to more global head kinematic parameters in an experimental 
framework. On the other hand, numerical tools are time consuming and require skilled staff for analysis and 
exploitation of results. Three solutions are known to address these difficulties: the development of dedicated 
HBM post-processors; the pre-computation of a high number of similar impact pulses; and the application of Deep 
Learning Methods. 
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An automatic head simulation post-processor was suggested by Strasbourg University [18] where the “Injury 
Risk Assessment Tool” reads the maximum intra-cerebral Von Mises Stress (VMS) and expresses the injury risk 
via the dedicated injury risk curve. More recently, this method was implemented in the so-called Dynasaur 
program [19] where a similar approach was applied to the full HBM. The pre-computation of a high number of 
head impact pulses in order to predict brain response without any head FE modelling was suggested by Ji et al. in 
2015 [20]. This study investigated the feasibility of pre-computed brain response atlas to estimate the brain 
strains using isolated parametrized rotational acceleration impulses. The method was successively evaluated 
against responses simulating two real-world head rotational pulses. It was concluded that this method could be 
developed in order to progress towards real-time estimation of tissue-level brain injury metrics. Deep Learning 
techniques were applied by Liang et al. (2017) [21] to predict stress distribution in order to provide an accurate 
and fast surrogate for FE analysis. The authors applied a Deep Neural Networks method for the prediction of 
stress in an aorta FEM and the efficiency of the method for a real-time estimation of organ responses was 
demonstrated. More recently, Zhan et al. (2020) [22] published a deep learning head model for real-time 
estimation of entire brain deformation under concussion. A total of 1,803 head impacts from American Football 
incidents were used for the development of the strain prediction algorithm in each element of the brain model. 
A Deep Neuronal Network was used to act as a function approximator to learn the relationship between the input 
kinematic and the calculated MPS from FE simulation. It was concluded that the method remarkably accelerated 
the calculation process compared with conventional FE simulation. Moreover, it was shown that the deep learning 
was accurate in predicting the level of brain MPS as well as the specific region of the brain suffering from the 
highest strain. Interestingly Wu et al. (2019) [23] developed a convolution neutral network (CNN) to estimate 
regional brain strain in real time by considering head rotational velocity profiles as 2D images along the three 
reference axes for input. Several brain strain metrics were considered and based on 2592 input pulses it was 
shown that the MPS for the whole brain was accurately estimated with a R² value of 0.996. Similarly Ghazi et al. 
(2021) [24] applied the CNN model to instantly estimate element-wise distribution of MPS of the entire brain by 
considering both, rotational velocity and acceleration 2D profiles for the three head reference axis. It was 
concluded that the CNN-estimated responses are accurate for 92.1% of the cases in terms of magnitude and 
location.  

In the context of Machine Learning applied to the assessment of brain injury risk in order to speed-up modelling 
efforts, the present study applies deep learning techniques directly to the estimation of maximum intra-cerebral 
Von Mises Stress computed with an existing brain FEM that has been shown to be best correlated with the 
occurrence of moderate concussion [25]. A total of 3,000 experimental 6D headform kinematic responses, 
recorded in the context of linear and oblique helmet tests, were considered for the FE simulation of the brain 
response and the assessment of brain injury risk. This material was partly used during the learning process and 
partly for the testing of the derived deep learning algorithm, with a final objective of progressing towards a FE-
model-free brain injury risk assessment tool. 

II. METHODS 

Brain FE model and injury metric 
This study is based on Strasbourg University FE Head Model (SUFEHM) (illustrated in Fig. 1), which is a numerical 
model of the human head, including realistic brain and skull material laws, and which permits the computation 
of the mechanical brain response under impact. Validation of this head model was provided in earlier studies [25, 
26], against local brain motion data [27, 28], as well as against intracranial pressure data [29, 30].  

In addition to the model validation, 109 real-world head trauma cases were simulated with this head model to 
derive brain injury criterion in terms of intracerebral Von Mises Stress to predict moderate concussion or short 
coma, known as AIS2+ injuries. Based on an in-depth Binary Logistic [31, 32] analysis of different computed 
intracerebral parameters as well as by considering different percentiles, the Nagelkerg parameter that expresses 
the quality of the regression  showed that maximum brain Von Mises Stress was the most appropriate metric to 
predict moderate concussion.  

The proposed brain injury tolerance limit for a 50% risk of this reversible brain injury has been established at 
37 kPa [12, 33]. The equation of the brain tolerance curve obtained with the Binary Logistic method for the 
computed VMS extracted from SUFEHM is recalled in Eq. (1) and plotted in Fig.1. along with the 5% and 10% error 
curves. As the option was chosen to consider the best mathematical fit instead of forcing at zero, this curve does 
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not show a zero risk for zero stress. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
1

1 + 𝑒𝑒3.178−0.087.𝑉𝑉𝑀𝑀𝑀𝑀 (1) 

 where 𝑉𝑉𝑉𝑉𝑉𝑉 is the max. value of brain Von Mises Stress in kPa. 

 

 
 

Fig. 1. Illustration of the different parts of the Head Finite Element Model and the related brain tolerance 
curve.  

 

Learning and Test data sets 
The data sets used were established in the context of an extensive helmet evaluation program, including bicycle 
[12] and motorcycle [15, 34, 35] helmets. They consist of 3,754 helmet impacts against horizontal and oblique 
anvils, with the recording of the 6D headform kinematic associated to the numerical simulation of all impacts 
with SUFEHM head model in order to compute the maximum brain VMS and to assess the brain injury risk for 
each of the impacts. Each input was expressed in terms of three linear accelerations and three angular velocities 
versus time, while the output metric was the time history of the maximum Von Mises Stress in the entire brain, 
computed within the brain model via the FE analysis.  

The model learning and assessment processes applied in the present study are described in the workflow 
shown in Fig. 2. In order to develop a Deep Learning Model (DLM) that is able to predict the maximum brain VMS 
for a given 6D head kinematic, there is a need to define a significative and isolated data set dedicated to learning.  

With all the data gathered with very different helmets and impact conditions, there was a need to distribute 
the whole data sets of 3,754 impacts into a training dataset (3,035 data), a validation data set (336 data) and a 
test data set (383 data). The data split was carried out randomly. The first step consisted in establishing the best 
hyper-parameters for the optimisation of the learning process by using the training and the validation data sets. 
In a second step, these two data sets were used to train the U-Net model [36] until the final DLM. Finally, the test 
data set of head impacts was used to evaluate the robustness of the proposed DLM. 

 
Fig. 2. Workflow of the training and testing methodology. 

 
It is important to point out that all the datasets present a similar distribution in terms of amplitude, as shown 

in Fig. 3. If it is obvious that the learning data must be different from the test data, all considered head impacts 
are in a range of impacts as encountered in the context of helmet tests. In the present study the distributions of 
the learning data are around the mean value of 153 g, 24 rad/s and 32 kPa for maximum linear acceleration, 
angular velocity and brain Von Mises Stress respectively, as reported in Table I.  

For the assessment of the performance of the DLM, the test data of 383 helmeted head impacts were 
considered. The peak linear acceleration and angular velocity values vary from 77 g to 308 g, with a mean value 
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of about 152 ± 42 g and 2.7 rad/s to 56.3 rad/s with a mean value of about 24.9±10.7 rad/s, respectively. Coming 
to the maximum brain Von Mises Stress calculated with the SUFEHM model for each of the 383 helmeted impacts, 
a mean value of about 33.2 ± 12.7 kPa was calculated (9.3 kPa to 79.1 kPa) and is also reported in Table I. 

 
 

Fig. 3. Distribution of the training (Train), validation (Valid) and test (Test) data sets in terms of peak resultant 
linear acceleration, peak angular velocity and maximum of VMS calculated with brain FEM. 

TABLE I 
DISTRIBUTION OF THE LEARNING DATA SET (3,754 CASES) IN TERMS OF MEAN VALUES 

Data Sets Counts Lin. Acc. [g] Ang. Vel. [rad/s] Max VMS [kPa] Brain Injury Risk AIS2+ 
Train 3,035 153 ± 41 24.5 ± 10.8 31.9 ± 12.4 41% ± 21% 
Valid 336 155 ± 37 24.1 ± 10.9 33.3 ± 13.3 43% ± 23% 
Test 383 152 ± 42 24.9 ± 10.7 33.2 ± 12.7 43% ± 22% 
All 3,754 153 ± 40 24.5 ± 10.8 32.2 ± 12.6 41% ± 22% 

 

Deep Learning Model 
The U-Net model applied in this study is a convolutional neural network originally introduced for biomedical 
image segmentation by [36]. Just as for image, each different kernel computes a different representation of the 
input. Therefore, the goal is to find/learn the best set of kernels to have a meaningful lower representation of the 
input to predict the output. This model has two symmetrical parts, an encoder part and a decoder part, as 
illustrated in Fig. 4. The encoder, on the left side, will learn features from the input that will be passed to the 
decoder, on the right side, to predict the output. To apply this method, we thus first reduced the dimension of 
the time series into features learned by the network, which allows us to predict the output as closely as possible 
to the FE-computed result. 
The encoder takes all input signals as input, applies a convolutional block and a MaxPooling of size 2 (max pool) 
to do down sampling and repeat this procedure 4 times. The convolutional blocks are defined as the repetition 
of two convolution of size 3 (conv) followed by a batch normalization (BN) which maintains the mean output close 
to 0 and the output standard deviation close to 1, as well as a nonlinear activation function (Relu). The decoder 
first operates a transpose convolution (up-conv) of the learned features which are then concatenated (concat) 
with features from the corresponding level of the encoder and then apply a convolutional block. 
 

 
 

Fig. 4. U-Net architecture used to approximate SUFEHM brain response in terms of VMS. 
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Since the performance of the model strongly depends on the hyper-parameters like the channels size, the batch 
size, the learning rate as well as the weight decay of the optimizer, a Bayesian optimization was used to tune 
them and are reported in Fig. 4. 

The optimization process of the U-Net model aims to minimize the loss function defined by 𝑓𝑓(𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣�) =
𝑙𝑙𝑙𝑙𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑣𝑣𝑣�)�, where 𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣� are the maximum Von Mises Stress (𝑉𝑉𝑉𝑉𝑉𝑉) vs time evolution 
calculated with FE and estimated by the U-Net model, respectively. The time evolution of maximum-VMS was 
discretized into 300 steps, i.e. with a timestep of 0.1 ms. The other metric used to evaluate the model during the 
optimization process was the Mean Absolute Error metric (𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) on the maximum VMS versus time on the 
validation data set of 336 data and is defined by Eq. (2). Thus, the loss function as well as 𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 compare the 
entire time evolution of the maximum VMS at each epoch.   

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
1

336
��

1
300

��𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤𝑡𝑡� �
300

𝑡𝑡=1

�
336

𝑖𝑖=1

 

 
With 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑡𝑡 represents the Von Mises Stress at the time 𝑡𝑡 for the 𝑖𝑖 data result. 

(2) 

 
As the brain injury risk is evaluated by using the maximum VMS of the maximum VMS vs time, the performance 

of the U-Net model was estimated by calculating the Mean Absolute Error metric (𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) on the maximum 
VMS for each of the 383 test data as defined by Eq. (3) and Eq. (4) in terms of VMS and Risk:  

𝑉𝑉𝑉𝑉𝑉𝑉 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1

383
��𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤𝑚𝑚𝑚𝑚𝑚𝑚� �
383

𝑖𝑖=1

 

With 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡[0,300](𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤𝑚𝑚𝑚𝑚𝑚𝑚� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡[0,300]�𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤𝑡𝑡� � 
(3) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1

383
��𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝚤𝚤� �
383

𝑖𝑖=1

 

With         𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 1

1+𝑒𝑒�3.178−0.087.𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚�

      and         𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝚤𝚤� = 1

1+𝑒𝑒�3.178−0.087.𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤
𝑚𝑚𝑚𝑚𝑚𝑚� �

 
(4) 

 
In addition, statistical metrics, such as Pearson’s correlation coefficient, and accuracy analysis, by calculating 

the proportion of cases whose max VMS Error was less than a threshold value (2 kPa and 5 kPa) as defined in Eq. 
(3) and Eq. (4), were calculated. These two thresholds correspond to a 5% and 10 % mean error on the brain injury 
risk, as illustrated in Fig. 1. 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖  =  �𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤𝑉𝑉𝑉𝑉𝑉𝑉𝚤𝚤𝑚𝑚𝑚𝑚𝑚𝑚� � (3) 

𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ≤ 𝑋𝑋) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜max𝑉𝑉𝑉𝑉𝑉𝑉 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑋𝑋  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑋𝑋 = 2 𝑘𝑘𝑘𝑘𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 5 𝑘𝑘𝑘𝑘𝑘𝑘    (4) 

 
 

III. RESULTS 

The U-Net model was trained for 500 iterations with a simple hold-out validation. For each epoch, a batch size 
of 1,024 was used. Fig. 5 represents the loss functions on training and validation data sets as well as the 
corresponding MAE values on validation data set as a function of epochs. Table II reports the mean MAE values 
calculated on the validation data with the best model and shows a mean MAE of 0.96 ± 1.09 kPa in terms of 
maximum VMS.  
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Fig. 5. Evolution of the loss functions on train and valid data sets and MAE values on valid data set. 
 

TABLE II 
MAE VALUES AND STANDARD DEVIATION CALCULATED FOR THE PROPOSED MODEL IN TERMS OF MAX VMS AND RISK ON THE 

VALID DATA SET FOR THE BEST MODEL OBTAINED 
Metrics MAE ± Std 

Max VMS [kPa] 0.96 ± 1.09 
Risk [%] 2.97 ± 3.52  

 
After the training process, the assessment of the performance of the U-Net model was carried out by using the 

test data set. The MAEs were then computed and are reported in Table III in terms of max. VMS and in terms of 
brain injury risk.  

The MAE calculated from training data sets in terms of VMS is similar to that calculated on the test data set 
with a value of 0.96 kPa.  

Further, the correlation between the maximum brain VMS calculated with the Deep Learning Model (DLM-
VMS) and the maximum VMS computed with the head FEM (FE-VMS) leads to a Pearson’s correlation coefficient 
equal to 0.9985. The accuracy and the robustness of the DLM can be illustrated by calculating the proportion of 
cases whose absolute error of the max. VMS was less than 2 kPa and 5 kPa, which are 96.3% and 99.5% 
respectively. In a similar way, the metrics are calculated for the brain injury risk, with values reported in Table III. 
Finally, linear regressions between maximum Von Mises Stress calculated with DLM-VMS and computed with FE-
VMS, as well as in terms of brain injury risk DLM/FE, are reported in Fig. 6. 

 

TABLE III 
STATISTIC METRICS CALCULATED WITH TESTS DATA SET (383 CASES) IN TERMS OF MAX VMS AND RISK 

Metrics Values 
Max VMS Mean Absolute Error (MAEtest) [kPa] 0.96 ± 1.09 

Risk Mean Absolute Error (MAEtest) [%] 1.5% ± 1.7 % 
R² Pearson Correlation between DLM-VMS and FE-VMS  0.9985 
R² Pearson Correlation between DLM-Risk and FE-Risk 0.9978 

Accuracy on proportion of cases with Max VMS absolute 
error 

< 2 kPa 96.3% 
< 5 kPa 99.5% 
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(a) (b) 

Fig. 6. (a) Linear regression between maximum Von Mises Stress calculated with the Deep Learning Model 
(DLM-VMS) and computed with the brain FE model (FE-VMS). (b) Linear regression between the Risk obtained 
by the DLM-VMS (DLM-Risk) and by the FE-VMS (FE-Risk) using Eq. (1). 

 
The assessment of the DLM is further illustrated in Fig. 7, with the representation of the distribution in terms 

of boxplot, without outliers, of the error between the max. VMS values computed by the FE model and the DLM 
model according to the range of brain injury risk. It can be observed that error dispersion on max. VMS is around 
4.4 kPa, with a maximal error dispersion in the highest risk range (90–100%). This observation is because the 
training data set considered in this study has a Gaussian distribution around a VMS of 32 kPa, i.e. a risk of about 
40%.  

 

 
 

Fig. 7. Distribution of the Max VMS error in terms of boxplot according to the Risk ranges. 
 

IV. DISCUSSION 

In this study a Deep Learning Model (DLM) was developed in order to predict maximum brain VMS for a given 
6D head kinematics without the use of any brain FEM. For the training, validation and testing of the DLM, a dataset 
of 3,754 experimental head kinematics, recorded during an extensive helmet evaluation program, as well as the 
brain response computed with an existing brain FEM was used. Results show that the Maximum Absolute Errors 
between the maximum brain VMS estimated with the DLM and the FE-computed values are in an acceptable 
range. Moreover, the regression between the DLM-VMS and the FE-VMS shows very high correlation, 
demonstrating that the deep learning approach holds potential for the future. Very high correlation between FE-
computed brain response of American Football incidences and real time estimation of the brain response via a 
convolution neutral network (CNN) were established also by Wu et al. (2019) [23] and  Ghazi et al. (2021) [24]. 
These recent studies focussed on regional brain strain and showed that MPS whole brain was better correlated 
than other strain metrics such as MPS corpus calosum or Fiber Strain corpus calosum. Strain and stress are linked 
via the brain constitutive law and due to the complex visco-elastic characteristics of brain, so its time dependence, 
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there is no strait forwards link between MPS and VMS. Moreover, a number of FE based brain injury metrics  [5–
7, 9, 37] as well as Global metrics [2–4] consider MPS as injury metric when Deck et al.2008 [21] focusses on VMS.  
It would therefore be of interest to extend the present study to the computation of MPS and to establish the 
correlation between FE-computed MPS with DLM_MPS. A further difference between the present study and [23, 
24], is that these earlier approaches consider two-dimensional head rotational velocity and/or acceleration 
profiles for the three head reference axes, when the present study suggest to implement both, the linear and the 
rotational kinematic into the FE and Deep Learning Models. If it is well established that the rotational loading of 
the head is a key parameter leading to potential brain injury, the linear head acceleration should not be excluded, 
to the present author’s opinion. Probably it is worth in this discussion to keep in mind that [23, 24] focuses on 
American Football-related pulses when the present study considers oblique and linear helmet tests. If the first 
are mainly rotational loading, the second clearly show high linear accelerations. It must be stated also here that 
if brain MPS is mainly sensitive to rotational loading it is potentially less sensitive to the linear loading then VMS 
is, as observed in [38]. This debate however needs further in-deep investigation focussing on a same brain FEM. 

When considering the Deep Learning aspects of the present study, U-Net structure is a fully convolutional 
neural network composed of an encoder which compresses the data, a latent space which gather the compressed 
data and a decoder which extrapolates the output by using the latent space and the encoder part. This structure 
allows to contribute consistently to the accuracy compared to a simple convolutional neural network. The training 
time is much more important due to the huge number of parameters, and it would be of interest to compare 
them with CNN-based models. However, in the context of the present study the learning phase is conducted only 
once in order to build-up the brain injury prediction tool, so the learning time is not of key importance. 

Another limitation is that the DLM needs “further learning”. It must be stated here that so far, the learning of 
the model was concentrated on impact conditions directly linked to the helmet evaluation program, i.e. Frontal, 
Lateral and Occipital impacts against a horizontal anvil followed by three impacts against a 45° inclined anvil 
leading to head rotation around the three reference axes. Consequently, head impact pulses ranged within 5 to 
15 ms in duration, 77 to 308 g in linear acceleration and 3 to 56 rad/s in angular velocity, leading to a Gaussian 
distribution of VMS around 32 kPa. This comment is well illustrated by Fig. 7 where it appears that the lowest 
errors are for the VMS of 11 to 46 kPa, i.e. for injury risk of 10% to 70% and that this errors increases with higher 
injury risk.  Therefore, it is important to mention that for the use of the DLM under very different impact 
conditions the model must be trained in a larger range of impact conditions. This kind of limitation was also 
pointed by [23] when expressing that the trained CNN permits instantly estimated regional brain strains with 
sufficient accuracy, especially for within-range impacts and that the temporal “shapes” of the head rotational 
velocity profiles were limited to what the measured/reconstructed impact datasets offered. There is also a 
limitation about potential skull deformation as the proposed approach is based on 6D non-deformable skull 
accelerations. Therefore, the developed DLM is restricted to use for protected impacts, such as helmeted head 
or head of car occupant, for which it is reasonable to consider the skull as a rigid body and to consider the 6D 
head kinematic as the input of the simulation of the head impact. However, in the case of direct head impact 
against a rigid structure or under ballistic loading, the “experimental vs numerical” approach considered in this 
paper is no longer applicable, so the present DLM is not. In such cases, it is necessary to simulate the head-
structure interaction with a deformable skull model associated to skull fracture criteria [39]. 

A further limitation in the training process is the use of a simple hold-out validation. The use of k-fold cross 
validation is useful when the performance of the model varies significantly depending on the partitioning chosen 
between the training set and the test set. As the different datasets were obtained randomly, no significative 
difference was observed in the present study. 

Finally, the limitations of the proposed DLM model are also linked to the limitation of the brain FE model and 
related brain injury criteria used. In this field a number of ongoing research projects must be mentioned, 
demonstrating that the brain model applied is a simplified model that can be replaced by more advanced brain 
models in the future. Among them, it is probably the brain constitutive law supposed to be linear viscoelastic in 
this study that must be improved in order to implement hyper-viscoelastic and anisotropic brain constitutive laws 
which enable it to compute the maximum axonal strains as reported in recent literature [40–43]. 
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V. CONCLUSIONS  

The assessment of brain injury risk based on tissue-level brain injury criteria typically requires the FE 
computation of the impact with a brain FEM as well as a dedicated tolerance curve. In this study a Deep Learning 
Model (DLM) was developed in order to predict maximum brain VMS for a given 6D head kinematics without the 
use of any brain FEM and to assess the brain injury risk accordingly. The dataset used for the learning process and 
the testing of the DLM involved 3,754 experimental head kinematics recorded during helmet impact tests, 
associated to the brain response computed with an existing brain FEM. Therefore, in the present study, head 
impact pulses ranged within 5 to 15 ms in duration , 77 to 308 g in linear acceleration and 3 to 56 rad/s in angular 
velocity   Results show that the Maximum Absolute Error between the maximum brain VMS estimated with the 
DLM, on the one hand, and with the FE-computed VMS value, on the other, is in an acceptable range as the 
regression between the DLM-VMS and the FE-VMS shows very high correlation, demonstrating that the deep 
learning approach should be further developed for research and industrial applications. The results demonstrate 
that deep learning methods can be applied in the context of brain response estimation without any FE 
computation, which will be of very high interest to the industrial sphere. As a whole, the learning process of the 
network worked adequately by learning from its mistakes through minimizing a cost function. However, this 
process must be extended to a larger range of head impact condition, such as extremely short or much longer 
pulses, before general application of the tool outside the helmet evaluation domain. In other words, the model 
needs to learn more. 
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