
I. INTRODUCTION

Computational head injury models are playing an increasingly important role in elucidating the biomechanical 
mechanisms of traumatic brain injury (TBI) for its ultimate detection, mitigation, and prevention. However, 
current head injury models require hours or even days on a high-performance computer to simulate a single head 
impact. They are too slow for any large-scale impact simulations or to offer any clinical concussion diagnostic 
capability in prospective applications. 

Strategies to substantially increase model simulation efficiency typically involves various simplifications of the 
complex brain-skull dynamic system. For example, reduced order models simplify the head injury model into a 
mathematical equation [1][2]. A pre-computed brain response atlas simplifies head impact kinematic profiles into 
idealised shapes as model input [3]. More recently, a convolutional neural network (CNN) was also proposed [4] 
that learns the complex brain-skull dynamic response mapping without any simplification to the model or input. 
The technique instantly estimates peak maximum principal strain (MPS) in specific regions of the brain with 
sufficient accuracy. It was further extended to instantly estimate element-wise peak MPS of the whole brain [5] 
for impacts drawn from those in contact sports.  

In this study, we extend the CNN technique to head impacts in automotive crashes. Compared to those in 
contact sports, head impacts in automotive crashes present further challenges—typically more complex head 
rotational velocity kinematics profiles with multiple peaks and much longer impact duration, i.e., up to 500 ms 
vs. typically 40–100 ms. Nevertheless, we investigated whether the pre-trained CNN based on the anisotropic 
Worcester Head Injury Model (WHIM V1.0) [6] and impacts in contact sports can be used to facilitate training for 
head impacts in automotive crashes using the Simulated Injury Monitor (SIMon) head injury model [7]. The latter 
head injury model was selected as it has been extensively used to simulate automotive head impacts.  

II. METHODS

A total of 458 head impact kinematic profiles were obtained from two publicly available automotive crash 
databases, including 286 impacts from the National Highway Traffic Safety Administration (NHTSA) and 172 cases 
from the Insurance Institute for Highway Safety (IIHS). Each impact was simulated by SIMon using the 
corresponding ground-fixed rotational velocity profile as input. A typical impact of 200 ms required ~25 min to 
simulate on a high-end workstation (20 CPUs; Intel Xeon E5-2683 v4) using LS-DYNA (Version 971) and another 
~20 min to obtain peak MPS of the whole brain over time, regardless of the location of occurrence.  

The resulting impact-response samples served as a training dataset to train a baseline CNN with random 
weight initialisation. The previous CNN architecture [4] was further adjusted to accommodate the much longer 
temporal duration found in some head impacts, e.g., ~500 ms vs. 40–100 ms. Specifically, the kinematic input 
temporal length was adjusted from the previous 200 ms to 1000 ms, via replicated padding to maintain a zero 
acceleration, i.e., values at the two velocity profile borders were replicated along the temporal axis. The stride 
sizes of the first two convolutional layers were also increased from 1 x 2 to 1 x 4 accordingly (detailed in [4]). 

The earlier pre-trained CNN using impacts in contact sports based on the anisotropic WHIM V1.0 [4] enabled 
transfer learning. Specifically, the converged weights from the pre-trained model served as the initial weights to 
train a separate CNN using the same earlier impact-strain training samples from automotive impacts and SIMon. 

Performance was measured using repeated (N=5) 10-fold cross-validation by comparing the CNN-predicted 
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MPS with the directly simulated responses in terms of coefficient of determination (𝑅𝑅2) and root mean squared 
error (RMSE). Performances of the two CNN models, with and without transfer learning, were compared. CNN 
required <0.1 sec on a laptop to estimate peak MPS of a head impact. 

III. RESULTS

Without transfer learning, the CNN model only converged in 42% of the 50 trials tested. In contrast, 100% of 
CNN trials converged with transfer learning. Performances of the two CNN training scenarios were compared 
using only successfully converged trials. With transfer learning, the CNN achieved significantly higher 𝑅𝑅2 and lower 
RMSE than the counterparts without (𝑅𝑅2 of 0.788 vs. 0.664 and RMSE of 0.045 vs. 0.056; p<0.01; Table 1). CNN-
estimated MPS from a typical fold in a successful trial is further compared against the directly simulated, with and 
without transfer learning (Fig. 1). 

TABLE I 
PERFORMANCE COMPARISONS OF THE CNN MODELS BASED ON 10-FOLD CROSS VALIDATION REPEATED BY FIVE TIMES. 

(N=458) 𝑅𝑅2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
With transfer learning 0.788±0.076 0.045±0.012 

Without transfer learning 0.664±0.130 0.056±0.014 

Fig. 1. CNN testing performances from one typical fold in a repeated 10-fold cross validation with (a) and 
without (b) transfer learning. Dashed lines: ±1 RMSE   

IV. DISCUSSION

This study investigates how a recent convolutional neural network (CNN) technique developed for contact 
sports [4][5] can be extended to automotive head impacts. Instead of similarly generating a large amount of 
training samples (which is time consuming and resource demanding), we explore whether the previously trained 
CNN can be re-used to aid training with a different impact dataset and a different head injury model. 

Our results indicate that transfer learning was indeed quite effective in facilitating CNN training (100% 
convergence rate vs. 42%). It also significantly improved the prediction accuracy (Table 1 and Fig. 1). These 
performance gains were obtained even though the pre-trained CNN was based on response samples from a 
different set of head impacts (contact sports vs. automotive crashes) and from a different head injury model 
(WHIM vs. SIMon). These findings suggest that the learned CNN neural network weights are capable of 
characterizing the underlying physics of head impacts, which is applicable to another head injury model or a 
different type of impact dataset. Therefore, transfer learning has the potential to significantly reduce the number 
of training samples required to achieve sufficient prediction accuracy for head impacts in automotive crashes. 
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