
Abstract Bridging veins (BV) rupture is a major cause of Acute Subdural Hematoma. This study aims to quantify 
their biovariability to better understand their properties and increase the biofidelity of finite element (FE) head 
models. The number of BV and their measured diameters were manually counted in CT angiograms from 67 
patients. A mixed linear model was used for the statistical analysis and the results were implemented in the KTH 
FE head model. LS-DYNA simulations were used to evaluate the amount of successful BV rupture predictions. 
The false positive and false negative predictions were also counted. The human brain has a mean of 23,18 BV, 
with diameters ranging between 0,37 and 3,24 mm. In the initial version of the KTH model two BV mechanical 
properties datasets gave a 6/8 successful prediction rate with one false positive and one false negative and one 
dataset gave a 7/8 successful prediction rate with one false negative. For the updated version all sets gave a 7/8 
successful prediction rate with one false negative. 
The number of BV and BV diameter size is segment dependent, but not hemisphere dependent. The 
implementation of these findings in the FE head model is a good preliminary attempt to increase BV rupture 
predictability.  

Keywords acute subdural hematoma, bridging vein diameter, CT angiogram, finite element head model, head 
impact 

I. INTRODUCTION

Bridging veins (BV) drain the blood from the cerebral cortex into the Superior Sagittal Sinus (SSS) (Vignes, 
Dagain, Guerin, & Liguoro, 2007) and they can be affected by mechanical forces applied to the brain. That will 
cause a relative movement of the brain inside the skull and could lead to their rupture (Depreitere et al., 2006), 
being a major cause of Acute Subdural Hematoma (ASDH) (Depreitere et al., 2006). 
BV vulnerability towards ASDHs is strongly linked to the bridging vein mechanical properties (Gennarelli & 
Thibault, 1982; Vajtr et al., 2007), that depend on the structure and geometry of the vessel wall (Glagov, 1994). 
When BV rupture, blood flows creating a space under the dura mater and accumulates between the dura mater 
and the cortex (Depreitere et al., 2006), generating a blood clot that compresses the brain. This will last from 
hours to a few days (Nierenberger, Wolfram-Gabel, et al., 2013) and will lead very often to disastrous sequels, 
such as long term incapacity (Gennarelli & Thibault, 1982) and high mortality rates (Depreitere et al., 2006). 
Despite the high importance of BV in the etiology of ASDH, not enough is known about their histological, 
morphological and mechanical properties (Famaey et al., 2015), mostly due to the high biovariability that 
characterizes these vessels. The knowledge of these properties is essential to better understand the 
vulnerability of BV (Nierenberger, Re, & Ahzi, 2013)  and to create biofidelic finite element (FE) head models 
(Famaey et al., 2015; Kleiven, 2002).  Finite elements models of the human head are one of the tools used to 
study head injuries such as ASDH. The wide majority of FE head models include a mechanical representation of 
bridging veins. The SIMon model  (Takhounts et al., 2008) has BVs modelled as cable discrete beams with a 
Youngs modulus of 0.275 MPa. The KTH FE head model (Kleiven, 2007) has discrete beam elements with a 
stiffness of 1.9N, while the UCDBTM (Horgan & Gilchrist, 2003) and the WSUBIM (Viano et al., 2005) also have 
similar BV representations. There have been only a few studies investigating the reliability of head models on BV 
ruptures. One of the main parameters that can affect BV rupture is the diameter size. To the best of the authors 
knowledge, so far all models assign the same diameter size to every BV in the model.  
CT angiography (CTA) is one of the most commonly used techniques for the evaluation of the brain vasculature, 
as it is fast (Pappu, Lerma, & Khraishi, 2016), it has high spatial resolution, and there is the possibility of creating 
various kinds of reconstructions in all desired planes  (Dirnhofer, Jackowski, Vock, Potter, & Thali, 2006; Gao, 
Wang, Xiong, & Chen, 2016).  
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Previous studies have shown that the anatomy of BV is quite variable (Famaey et al., 2015; Monea et al., 2014). 
The mean number of BV reported in literature is 12.3± 3.3 (males 12.9± 2.6, females 11.7± 3.8) per hemisphere, 
with a range of 7-20 BV (Brockmann, Kunze, Schmiedek, Groden, & Scharf, 2012). BV diameters range between 
0.5-5.3 mm (K Oka, Rhoton, Barry, & Rodriguez, 1985), changing significantly depending on the location along 
the vein (Yamashima & Friede, 1984). However, anatomical and morphological characteristics of BV in the 
human brain, such as the distribution of BV along the SSS and the differences in diameters between different 
brain lobes, are still not clear (Chen et al., 2017a; Delye et al., 2006; Ehrlich, Maxeiner, & Lange, 2003; Lee & 
Haut, 1989; Li, Mahmood, Zhou, & Chopp, 2008; Monea et al., 2014; Monson, Goldsmith, Barbaro, & Manley, 
2005; Kazunari Oka, Rhoton, Barry, & Rodriguez, 1985; Sampei, Yasui, Okudera, & Fukasawa, 1996; Vignes et al., 
2007; Yamashima & Friede, 1984; Zhu, Wang, & Deng, 2018). Therefore, this study aims to provide the 
necessary anatomical description of BVs inter-subject diameter and distribution differences. This knowledge will 
be very useful to increase biofidelity in FE head models in the future.  

II. METHODS 

CTA from 67 patients (31 females, 36 males; age ranging from 24-89 years; mean age 60,75 years (SD 19,79), 
without previous history of neurovascular or neurological condition, taken in the context of routine clinical 
practice in University Hospitals Leuven (UZ Leuven), were collected, anonymized, and individually studied in the 
software MIMICS Research 19.0 (Materialise NV) by one researcher, who was blinded to the age and clinical 
status of the patient. 
CTA were performed with an injected volume of contrast of 
100 ml and a concentration of 350 mgI/ml. Whole stack 
images were used. Following the methodology of Musigazi et 
al, the cerebral cortex of each patient was divided in 10 equal 
segments,  considering the inion and the nasion as reference 
points (Musigazi & Depreitere, 2015). The lines that 
separated the segments were placed at 18° one from the 
other. Segments 1-4 correspond to the frontal lobe, segments 
5-8 to the parietal lobe and segments 9-10 to the occipital 
lobe (Musigazi & Depreitere, 2015). 
The number of BV found in each segment, together with their 
measured diameters at the SSS-BV connection point and at 1 
cm proximal to the SSS, for both hemispheres, were manually 
counted by one researcher with biomedical training and 
supervised by a medical doctor. Diameters were measured 
with the `measure diameter' tool in MIMICS Research 19.0 
(Materialise NV), using the predefined threshold sets for Soft Tissue CT provided by MIMICS Research 19.0 
(Materialise NV). A graphical representation of the diameters’ measurement can be observed in Supplementary 
Material [Figure 2].  
All the results were registered in Excel. The total number of BV, mean diameter, SD, Median, Min and Max 
values were calculated for each segment individually and for the frontal, parietal and occipital lobes in Excel. 
Diameter measurements in the SSS were compared to the measurements taken at 1 cm proximal to the SSS.  
Given that previous studies found no statistically significant differences in the number and size of BV between 
the right and left hemisphere (Han, Tao, & Zhang, 2007; Khuman et al., 2011), a test of fixed effects in SAS was 
used in our cohort to test if there were differences in the number of BV, distribution along the SSS and 
diameters between both hemispheres. The hemispheres were considered as independent variables in our 
statistical analysis. The probability for the presence of BV in the 10 different segments was calculated by 
dividing the number of observations of 1 or more BV per segment by the number of hemispheres studied. The 
probability for having only 1 BV and 2 or more BV per segment was also calculated by dividing the number of 
observations of 1 BV or 2 BV or more, respectively, per segment by the number of hemispheres studied. The 
probability of not having BV in the segment was calculated by dividing the number of times that no BV were 
observed, by the number of hemispheres studied. The percentages of diameter diminution at 1 cm proximal to 
the SSS were calculated dividing the diameters measured at 1 cm proximal to the SSS and the diameters 
registered in the SSS-BV connection point in the same vein [Fig 7].  

Figure 1: CT scan with the cerebral cortex divided in 
10 segments 
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A statistical analysis was performed with a SAS PROC MIXED model (Dickey, 2008), developed by the Leuven 
Statistics Research Center (LSTAT), in order to estimate the overall relations in the number and diameter size of 
BV between the 10 different segments. This model allowed us to fit a mixed effects model by maximum 
likelihood (Bates, n.d.), getting estimates of the variance components (Dickey, 2008). P values lower than 0.05 
were considered to indicate a statistically significant difference. 
The obtained results were implemented in the KTH FE head model (Kleiven, 2002). The Youngs modulus and 
diameter size reported by Delye (Delye et al., 2006), Monea (Monea et al., 2014) and Monson (Monson et al., 
2005) were used to model the BV. The diameter sizes were adapted according to the CTA findings. More 
specifically, the percentage difference of the diameter size of the BV per lobe in the CTA dataset was calculated 
and then that percentage was applied to the three datasets in order to create models with lobe specific 
diameter sizes [Table 3]. Therefore, 3 non-lobes specific models (NLS) and 3 lobe specific models were 
developed using the aforementioned BV properties datasets. As rupture criterion the ultimate strain reported 
by each study was used [Table 1]. The strain calculated was the engineering strain and the peak strain was the 
maximum positive strain value of all BVs over the duration of the entire simulation. The experiments performed 
by Depreitere et al. 2006 were simulated in LS-DYNA using both the non-lobe specific models (NLS) and the lobe 
specific models (LS), upon which the amount of successful BV rupture predictions was evaluated. In the 
experiments 18 impacts were performed on 10 cadavers. When no rupture was produced from the initial impact 
the cadaver was impacted again. With respect to the second impacts, because the damage of the initial impact 
cannot be accounted for, the second impacts are not taken into consideration. Furthermore, 2 out of the 10 
initial impacts were excluded because the data quality issues.  All rupture sites are located in the pre and post 
Rolandic region. This area corresponds to the yellow and purple area in Figure 1 and should include segments 4, 
5, 6 and 7. The objective was to evaluate how many successful predictions the lobe specific models can produce. 

III. RESULTS 
 
3.1. Number and diameter size of BV in the hemispheres 
In our cohort, 832 BV were found in the right hemisphere and 749 BV in the left hemisphere. The boxplots show 
the number of BV found in each segment, for the left and right hemisphere, where RS is representing the right 
hemisphere segments and LS the left [Fig 3]. The BV mean diameters found in the SSS are shown for each 
segment and both hemispheres [Fig 4]. 
A comparison of the mean diameters found in each segment, in the right and left hemisphere, was performed 
with our SAS PROC MIXED model. The results showed no statistically significant differences between them (p 
0.6271). 
 

 
 

Figure 3: The number of observed BV per segment in the hemispheres. The highest number of BV is 
located in the parietal region, especially in segment 5, while the lowest number of BV is located in the 
occipital region 
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Figure 4. Mean diameter of the BV in the SSS per segment in hemispheres. They range between 1.22 
mm and  1.72 mm, being the mean diameter for the cohort 1.40 mm. 

 
3.2. Number of BV along the SSS 
A total of 1581 BV, distributed along the 10 segments in which we divided the cerebral cortex, were studied in 
our cohort [Fig 5]. 
For the frontal, parietal and occipital lobe, the number of BV found in our cohort was 547, 977 and 57, 
respectively [Fig 6]. Within our cohort, there was a mean of 11,59 BV per brain hemisphere, ranging from 1 to 
30 (SD 5,32), and a mean of 23,18 BV per brain, with a range from 2 to 48 (SD 9,49). 
 

 
Figure 5: The number of BV per segment for both hemispheres combined. The highest number of BV can be seen in 
segments 5 and 6, while the lowest number of BV can be seen in segments 9 and 10. 
 
3.3. Probability for the presence of BV in the different segments in the SSS 
A total of 134 brain hemispheres were studied in our cohort. The probability for the presence of BV, for having 
only 1 BV and for having 2 or more BV in the 10 different segments was calculated. [Table 3 and Fig 7].  
 
3.4. Mean diameter of BV along the SSS 
The BV diameters, measured in each segment at the SSS-BV connection point ranged between 1,22-1,72 mm 
[Fig 4 and table 4].  
The mean BV diameters per segment for the hemispheres can be seen in Figure 10.  
The mean diameter at the SSS-BV connection point was 1.33 mm (SD 0.40; range 0.52-3.15 mm) in the frontal 
lobe, 1.44 mm (SD 0.45; range 0.37-3.09 mm) in the parietal lobe and 1.26 mm (SD 0.45; range 0.54-3.24 mm) in 
the occipital lobe. Considering the three lobes together, the mean diameter is 1.40 mm (SD 0.44; range 0.37-
3.24 mm)[Fig 8].  
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After calculating the percentages of diameter diminution at 1cm proximal to the SSS we can see that there is a 
mean reduction in diameter of a 3% in the brain, which ranges from a diminution of 21% to a diminution of 2% 
in the different brain lobes, if we consider them separately [Fig 9]. 
The mean BV diameters per segment for the 134 hemispheres can be seen in Figure 10. The mean observed 
diameters in the 10 different segments, for our two reference locations can be seen in Supplementary Material 
[Figure 11]. 
The results obtained by the Differences of Least Squares Means test, included in our SAS PROC MIXED MODEL in 
order to know whether the differences in this comparison were statistically significant, are shown in 
Supplementary Material [Table 1]. 
 

 
 
 
 
 
 

 
 

 
Figure 6: Total number of BV in the frontal, parietal and occipital lobe 
 
The results show that at the SSS-BV connection point there are statistically significant different diameters within 
the frontal lobe, between the frontal and the parietal lobe, within the parietal lobe, between the frontal and the 
occipital lobe and between the parietal and the occipital lobe (Supplementary Material [Table 1]). 
The predicted mean diameter was also obtained by the SAS PROC MIXED model [Supplementary Material [Fig 
11]], which will be very useful in the future for finite element (FE) modelling of the BV. This predicted mean 
diameter ranges between 1,2 and 1,6 mm. 
 

TABLE I 
BV MECHANICAL PARAMETERS REPORTED IN LITERATURE 

  σu [MPa] ε u [%] E [MPa] 
Delye 4.99±2.55 25.00± 8.00 30.69± 19.40 

Monea 4.19±2.37 29.82± 13.26 25.72± 15.86 
Monson 1.32±0.62 50.00± 19.00 6.43± 3.44 

TABLE II 
BV DIAMETER SIZE FOUND IN LITERATURE 

 Mean Diameter [mm] Frontal mean diameter 
[mm] 

Parietal mean 
diameter [mm] 

Occipital mean 
diameter [mm] 

Delye 2.71 2.61 2.83 2.47 
Monea 3.42 3.30 3.57 3.12 

Monson 1.84 1.77 1.92 1.68 
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Figure 7: Probability for the presence of BV in the different segments. The parietal region has the highest probability for 
the presence of BV and the occipital region the lowest. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III 
PROBABILITY  FOR THE PRESENCE OF BV IN THE DIFFERENT SEGMENTS 

 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 
Observed 

BV_1 
2 73 110 109 118 117 117 102 34 5 

Probability 
(%) BV_1 

1% 54% 82 % 81 % 88 % 87 % 87% 76% 25% 4% 

Observed 
BV=1 

2 38 51 53 40 36 43 35 22 5 

Probability 
(%) BV=1 

1% 28% 38% 40% 30% 27% 32% 26% 16% 4% 

Observed 
BV_2 

0 35 59 56 80 83 75 67 
 

12 0 

Probability 
(%) BV_2 

0% 26% 44% 42% 60% 62% 56% 50% 9% 0% 

Observed 
BV=0 

132 61 24 25 14 15 16 32 100 129 

Probability 
(%) BV=0 

99% 46% 18% 19% 10% 11% 12% 24% 75% 96% 

TABLE IV 
MEAN DIAMETERS (MM) OF THE BV MEASURED IN THE SSS-BV CONNECTION POINT FOR THE DIFFERENT SEGMENTS 

Segment  1  2 3 4  5 6 7 8 9 10 

Mean diameter (mm) at the 
SSS-BV connection point 

1,48 1,38 1,30 1,32 1,46 1,49 1,47 1,35 1,22 1,72 

The differences between the different segments can be seen in Supplementary Material [Table 1]. 
Comparing the measurements taken at 1 cm proximal to the SSS-BV connection point, BV diameters are 
statistically significantly different between the frontal and the parietal lobe, within the parietal lobe, and 
between the parietal and occipital lobe (Supplementary Material [Table1]). The differences between the 
different segments can be observed in Supplementary Material [Table 1]. 
For the comparison of the BV diameter measurements at the SSS-BV connection point and 1 cm proximal to it, 
in the same segment, differences are only statistically significant in Segment 2 (Supplementary Material [Table 
1]). 
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Figure 8: Box plots for the BV diameters, measured at the SSS-BV connection point and at 1cm proximal to the SSS, for the 
brain (FPOL), frontal lobe (FL), parietal lobe (PL) and occipital lobe (OL) 
 

 
Figure 9: Box plots for the percentage of BV diameter decreasing at 1 cm proximal to the SSS, for the brain (FPOL),frontal 
lobe (FL), parietal lobe (PL) and occipital lobe (OL) 
 

 
Figure 10: Mean diameter of the BV per segment for both hemispheres. We can see that BV located in the parietal region 

have bigger diameters than those located in the frontal and occipital regions. 
 

 
3.5.Simulation results – Lobe specific model 
The resulting comparison between the initial or Non-lobe specific model (NLS) and the lobe specific (LS) model is 
shown in table 5. The rupture criterion is the mean ultimate strain (μ), the mean ultimate strain minus one 
standard deviation (μ-σ) or the mean ultimate strain plus one standard deviation (μ+σ). The success rate is the 
percentage of the correct predictions over the total number of experiments. 
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The results of each individual case are shown for all models in table 6.  
For each set the false positive and false negative predictions were counted along with the successful 
predictions. In the initial version of the KTH model two sets gave a 6/8 successful prediction rate with one false 
positive and one false negative and one set gave a 7/8 successful prediction rate with one false negative. For the 
lobe specific version all sets gave a 7/8 successful prediction rate with one false negative. 

IV. DISCUSSION 

A total of 1581 BV were evaluated along the SSS in our cohort. Our results show that in the human brain there is 
a mean of 23.17 BV, with a range from 2 to 48 (SD 9.49), and a mean of 11.59 BV per brain hemisphere, ranging 
from 1 to 30 (SD 5.32). 
These results are consistent with the results obtained by Han et al. (Han et al., 2007). However, we found bigger 
ranges than those shown in literature. Brockmann et al. (Brockmann et al., 2012) found a range from 7-20 BV 
per hemisphere, while Ehrlich et al. (Ehrlich et al., 2003) found a range from 9 to 31 BV per brain. Regarding the 
distribution of BV along the SSS, we found differences in the BV distribution in the different brain lobes. The 
parietal lobe, especially segment 5, is the region where we found the highest number of BV, while the occipital 
lobe was the region where we found the lowest number of BV. This uneven distribution of BV along the SSS has 
also been previously described in literature by Han et al (Han et al., 2007), who have stated that this is the 
reason why, with whatever movement of the brain in relation to the skull, there is a risk of rupture of BV leading 
to acute subdural hematoma. 
Previous studies performed in cadavers have shown that veins in the rolandic or prerolandic areas tend to tear 
with rotational acceleration (Depreitere et al., 2006) and that the parietal region, where the highest number of 
BV are located, is also the most frequent region of BV rupture and ASDH (Depreitere et al., 2006; Kapeliotis et 

TABLE V 
Rupture prediction results between NLS and LS models 

Model BV properties μ-σ μ μ+σ 
NLS Delye 75% 75% 75% 

 Monea 75% 88% 88% 

 Monson 75% 75% 75% 
LS Delye 75% 88% 88% 

 Monea 75% 88% 88% 

 Monson 75% 88% 88% 

TABLE VI 
Simulation results obtained in each individual case for all models 

Case Model Delye Monea  Monson 

  
RP M. Str Loc RP M. Str Loc RP M. Str Loc 

01-3_1 NLS FP 27.2% M SP 26.0% M FP 73.2% B 

 
LS SP 24.9% M SP 24.6% M SP 41.5% F 

21-3_1 NLS SP 5.3% B SP 3.1% B SP 11.7% B 

 
LS SP 3.8% B SP 3.6% B SP 8.0% B 

22-3_1 NLS SP 5.9% B SP 4.4% B SP 10.2% B 

 
LS SP 5.2% B SP 4.8% B SP 8.7% B 

25-2_1 NLS SP 6.7% B SP 6.2% B SP 10.8% F 

 
LS SP 6.0% B SP 5.8% B SP 9.5% F 

28-2_1 NLS FN 10.2% B FN 9.9% B FN 18.8% B 

 
LS FN 10.0% B FN 9.6% B FN 17.6% B 

29-3_1 NLS SP 47.5% B SP 87.9% B SP 139.5% B 

 
LS SP 46.1% B SP 81.9% B SP 130.4% B 

30-2_1 NLS SP 7.8% B SP 7.7% B SP 16.4% B 

 
LS SP 6.7% B SP 6.4% B SP 12.6% B 

32-2_1 NLS SP 8.5% B SP 6.9% B SP 17.1% B 

 
LS SP 7.4% B SP 7.1% B SP 13.3% B 

RP = rupture prediction, M. Str = maximum strain, Loc = maximum strain location  
SP = successful prediction, FP = false positive, FN = false negative 
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al., 2019). 
Given that BV are unevenly distributed along the SSS, we decided to calculate the probability for the presence of 
BV in the different brain regions, which is an operation that has not been previously shown in literature and 
would be very important for BV representation in FE head models. Changing the position of BV in the FE model 
and implementing different diameters in the different lobes is a straightforward adaptation of the model that 
will affect the observed BV stresses and strains. 
Our results show that there is a higher probability to have BV in the parietal lobe, than in the occipital and 
frontal lobes, in the SSS. Moreover, in the SSS there is a higher probability of having only 1 BV per segment in 
the frontal and occipital lobe, while in the parietal lobe there are higher chances of having ≥2 BV per segment. 
The study of the distribution of BV was complemented with the manual measurement of the diameter in all the 
BV found in the CTA scans of the patients in our cohort. A major limitation is that in CTA images the only visible 
part is the lumen of the vein. This is the reason why instead of using the actual measurements of the BV in the 
KTH head model we use the percentage difference of BV diameter obtained in our study. In this way, we use the 
measured diameters and mechanical properties from each individual study but we also add the lobe specificity 
that was observed in our findings. Furthermore, we did not have the possibility to consider the thickness of the 
BV wall in our BV diameters measurement. The wall thickness of the BV that is considered in the original KTH 
model was also adjusted according to the same percentage difference. To the best of the authors knowledge, 
there is no imaging technique with a high enough resolution to capture the wall thickness of BV in in vivo 
patients. Furthermore, this evaluation has been manually done by one researcher and, therefore, user-
dependent. However, despite these limitations, these results provide very useful information about anatomical 
and morphological properties of BV. 
BV diameters in our cohort ranged between 0.37 and 3.24 mm, while slightly larger diameters, ranging between 
0.5 and 5.8 mm, were reported in other studies (Chen et al., 2017b; Delye et al., 2006; Ehrlich et al., 2003; Lee & 
Haut, 1989; Monea et al., 2014; Monson et al., 2005; Sampei et al., 1996; Vignes et al., 2007; Yamashima & 
Friede, 1984; Zhu et al., 2018) [Table 4, Fig 7]. The pixel size of the available CTA ranged from 0.24 to 0.86 mm 
with a mean of 0.5 mm. 
Previous studies have described that BV diameters change significantly depending on their location in the vein  
(Famaey et al., 2015). Thus, we decided to consider one more measurement point, 1 cm proximal  to the SSS, in 
order to see how diameter changes within the same vein. Our results show a mean diameter of 1.28 mm (SD 
0.38) in the frontal lobe, of 1.42 mm (SD 0.47) in the parietal lobe and of 1.20 mm (SD 0.37) in the occipital lobe.  
A minor diameter difference of 3% has been observed between the SSS and 1 cm proximal to the SSS when 
considering all the lobes together, while a 21% diameter diminution was found when calculating the differences 
in the FL.  
That was also observed in our SAS PROC MIXED model. There, we saw that only the changes in diameter 
throughout the length of the vessel were statistically significant in segment 2. Even though we see a tendency 
for a decrease of 3% in the diameter towards the brain end of the vein in the SSS, we only found statistically 
significant differences for one of the ten segments. 
Our results have demonstrated that the number and diameters of BV in the SSS, do not have statistically 
significant differences between the left and right hemisphere. However, they have statistically significant 
differences between the frontal, parietal and occipital lobe, with the parietal lobe being the one with the 
highest number and the bigger diameters of BV, and the occipital lobe the one with the lowest number and 
smallest diameters. 
These results will be very useful in the future to increase the biofidelity of BV in FE head models and to allow 
reliable prediction of ASDH due to BV rupture that is necessary, given its high prevalence (Attwell & Laughlin, 
2001) and needs to be achieved by a more extensive study of anatomical, morphological and mechanical 
properties in these veins (Famaey et al., 2015). FE simulation has been used in the past years to investigate 
injury mechanics and can predict head responses and injuries in different impact situations (Famaey et al., 
2015). 
Furthermore, the lobe specific models showed that there was an improvement in the predictive capability of BV 
rupture. Out of the 8 cases in total, there was only one false negative and one false positive result when the 
initial NLS model was used. From these two false results, the false positive case prediction was eliminated from 
all datasets in the newly adapted LS model. In that same case for the set of Monson et al 2005 , the lobe specific 
maximum strain prediction was at segment 3 which is closer to the prerolandic area than segment 9 in the non-
lobe specific model. This is another indication that increasing biofidelity in BV representation can improve the 
predictive capability of FE head models, even though the rest of the maximum strain locations did not change 
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and remained at the occipital lobe for both models for the other cases. Which is contrary to results of the 
cadaver experiments that showed all ruptures located at the rolandic and prerolandic area that corresponds to 
the parietal lobe closer to the border with the frontal lobe.   While more experiments like the experiments from 
Depreitere (Depreitere et al., 2006) would help modelers improve FE head models in ASDH prediction, for the 
moment and by using the available information we have at hand, this new adaptation is considered to be of 
value. 
The KTH model adaptation of Zhou et al (Zhou, Li, & Kleiven, 2019), where the authors used an FSI approach to 
model cerebrospinal fluid, could have been an even more suitable approach to apply our findings with respect 
to BV anatomy. However, that model was considered at the time to be a rather heavy model to run and 
considering our resources we opted for the standard KTH model to use as a proof of concept. This is however a 
step that should be investigated in the future. 
Different FE head models have been developed in the last decades (Kleiven, 2002; Roth, Raul, & Willinger, 
2010). However, some of them do not include a mechanical representation of BV or do not include important 
anatomical considerations that would increase their biofidelity (Famaey et al., 2015). Some examples are the 
models developed in the Université de Strasbourg (UDS) (Roth et al., 2010) or the KTH FE head model (Kleiven, 
2002). In the case of the models developed by UDS (Roth et al., 2010), they do not contain a mechanical 
representation of BV, while the KTH FE head model (Kleiven, 2002), includes 11 pairs of BV, that were modelled 
according to the anatomical descriptions of Oka et al. (Kazunari Oka et al., 1985). Applying in FE head models 
the findings concerning the distribution and diameter size of BV in different brain lobes will increase their 
biofidelity and improve their predictive capability w.r.t. ASDH. 
However, those models do not consider the differences in BV distribution and diameters in the different brain 
lobes that will increase FE head models' biofidelity and which will be possible in the future considering our 
results. 
Furthermore, these results can also be very important in neurosurgery, as bridging veins are used as landmarks 
in specific locations during neurosurgery (Mortazavi et al., 2013), and an improvement in the anatomical and 
morphological knowledge of BV could improve the quality of the procedures in this field. 

V. CONCLUSIONS  

The human brain has a mean of 23.18 BV (11.59 per hemisphere) distributed along the SSS, with diameters 
ranging between 0.37 and 3.24 mm, that differ in number and diameter between the frontal, parietal and 
occipital lobe in the SSS among patients. In the SSS, the parietal lobe has the highest number of BV, with the 
biggest diameters, while the occipital lobe has the lowest number of BV, with the smallest diameters. Therefore, 
the number of BV and BV diameter size is segment dependent, but not hemisphere dependent. There are no 
statistically significant differences in the number and diameters of BV in the SSS between the left and right 
hemisphere. Modelling these findings in the KTH head model was a good preliminary attempt to  show an 
improvement in its predictive capability, making it clear that more biofidelity is needed in order to improve the 
overall predictive capability of the models.  
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SUPLEMENTARY MATERIAL 
 
 
 
 
 

Figure 2: CT scan with a measured diameter at the SSS-BV connection point and at 1cm proximal to the SSS 
 
 

 
 

 
Figure 11: Predicted BV mean diameters at the SSS-BV connection point and at 1 cm proximal to the SSS in the 10 
segments 
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Differences of Least Square Means 
 
Table 1: Differences of Least Squares Means for the BV diameters at the SSS-BV connection point and 1 cm 
proximal to the SSS in the 10 different segments 
 
S S Est. SE t Value  Pr > |t| 
S 1 1cm S 2 1cm 0.2346    0.2924            0.80     0.4225            
S1 1cm S 2 SSS 0.09488   0.2924            0.32     0.7456            
S 1 1cm S 3 1cm 0.2500    0.2913            0.86     0.3910            
S 1 1cm S 3 SSS 0.2037    0.2914            0.70     0.4846            
S 1 1cm S 4 1cm 0.1945    0.2914            0.67     0.5046            
S 1 1cm S 4 SSS 0.1847    0.2914            0.63     0.5262            
S 1 1cm S 5 1cm 0.04052   0.2911            0.14     0.8893            
S 1 1cm S 5 SSS 0.05288   0.2911            0.18     0.8559            
S 1 1cm S 6 1cm 0.04159   0.2912            0.14     0.8864            
S 1 1cm S 6 SSS 0.008091 0.2912            0.03     0.9778            
S 1 1cm S 7 1cm 0.08391   0.2912            0.29     0.7732            
S 1 1cm S 7 SSS 0.04137   0.2912            0.14 0.8870            
S 1 1cm S 8 1cm 0.1789    0.2913            0.61     0.5392            
S 1 1cm S 8 SSS 0.1601    0.2913            0.55     0.5827            
S 1 1cm S 9 1cm 0.3333    0.2961            1.13     0.2604            
S 1 1cm S 9 SSS 0.2756    0.2961            0.93     0.3521            
S 2 1cm S 2 SSS -0.1397   0.05071           -2.75    0.0059            
S 2 1cm S 3 1cm 0.01538   0.04570           0.34     0.7364            
S 2 1cm S 3 SSS -0.03093 0.04585           -0.67    0.4999            
S 2 1cm S 4 1cm -0.04010 0.04591           -0.87    0.3825            
S 2 1cm S 4 SSS -0.04984 0.04584           -1.09    0.2770            
S 2 1cm S 5 1cm -0.1941   0.04457           -4.35    <.0001 
S 2 1cm S 5 SSS -0.1817   0.04430           -4.10    <.0001 
S 2 1cm S 6 1cm -0.1930   0.04461           -4.33    <.0001 
S 2 1cm S 6 SSS -0.2265   0.04467           -5.07    <.0001 
S 2 1cm S 7 1cm -0.1507   0.04495           -3.35    0.0008            
S 2 1cm S 7 SSS -0.1932   0.04481           -4.31    <.0001 
S 2 1cm S 8 1cm -0.05566 0.04565           -1.22    0.2228            
S 2 1cm S 8 SSS -0.07450 0.04552           -1.64    0.1018            
S 2 1cm S 9 1cm 0.09875   0.06914           1.43     0.1533            
S 2 1cm S 9 SSS 0.04099   0.06914           0.59     0.5533            
S 2 SSS S 3 1cm 0.1551    0.04561           3.40     0.0007            
S 2 SSS S 3 SSS 0.1088    0.04576           2.38     0.0175            
S 2 SSS S 4 1cm 0.09960   0.04580           2.17     0.0297            
S 2 SSS S 4 SSS 0.08986   0.04575           1.96     0.0496            
S 2 SSS S 5 1cm -0.05436 0.04445           -1.22    0.2214            
S 2 SSS S 5 SSS -0.04201 0.04419           -0.95    0.3419            
S 2 SSS S 6 1cm -0.05329 0.04451           -1.20    0.2313            
S 2 SSS S 6 SSS -0.08679 0.04457           -1.95    0.0516            
S 2 SSS S 7 1cm -0.01097 0.04485           -0.24    0.8068            
S 2 SSS S 8 1cm 0.08404   0.04552           1.85     0.0649            
S 2 SSS S 8 SSS 0.06520   0.04540           1.44     0.1510            
S 2 SSS S 9 1cm 0.2384    0.06907           3.45     0.0006            
S 2 SSS S 9 SSS 0.1807    0.06907           2.62     0.0089            
S 3 1cm S 3 SSS -0.04631 0.03866           -1.20    0.2310            
S 3 1cm S 4 1cm -0.05548 0.03942           -1.41    0.1594            
S 3 1cm S 4 SSS -0.06522 0.03933           -1.66    0.0973            
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S 3 1cm S 5 1cm -0.2094   0.03765           -5.56    <.0001 
S 3 1cm S 5 SSS -0.1971   0.03730           -5.28    <.0001 
S 3 1cm S 6 1cm -0.2084   0.03752           -5.55    <.0001 
S 3 1cm S 6 SSS -0.2419   0.03766           -6.42    <.0001 
S 3 1cm S 7 1cm -0.1661   0.03806           -4.36    <.0001 
S 3 1cm S 7 SSS -0.2086   0.03790           -5.50    <.0001 
S 3 1cm S 8 1cm -0.07104 0.03888           -1.83    0.0678            
S 3 1cm S 8 SSS -0.08988 0.03877           -2.32    0.0205            
S 3 1cm S 9 1cm 0.08336   0.06515           1.28     0.2008            
S 3 1cm S 9 SSS 0.02561   0.06515           0.39     0.6943            
S 3 SSS S 4 1cm -0.00917 0.03958           -0.23    0.8168            
S 3 SSS S 4 SSS -0.01891 0.03947           -0.48    0.6319            
S 3 SSS S 5 1cm -0.1631   0.03781           -4.31    <.0001 
S 3 SSS S 5 SSS -0.1508   0.03746           -4.02    <.0001 
S 3 SSS S 6 1cm -0.1621   0.03768           -4.30    <.0001 
S 3 SSS S 6 SSS -0.1956   0.03781           -5.17    <.0001 
S 3 SSS S 7 1cm -0.1197   0.03822           -3.13    0.0017            
S 3 SSS S 7 SSS -0.1623   0.03807           -4.26    <.0001 
S 3 SSS S 8 1cm -0.02473 0.03903           -0.63    0.5265            
S 3 SSS S 8 SSS -0.04357 0.03892           -1.12    0.2630            
S 3 SSS S 9 1cm 0.1297 0.06525           1.99     0.0470            
S 3 SSS S 9 SSS 0.07192   0.06525           1.10     0.2704            
S 4 1cm S 4 SSS -0.00974 0.03931           -0.25    0.8043            
S 4 1cm S 5 1cm -0.1540   0.03820           -4.03    <.0001 
S 4 1cm S 5 SSS -0.1416   0.03786           -3.74    0.0002            
S 4 1cm S 6 1cm -0.1529   0.03800           -4.02    <.0001 
S 4 1cm S 6 SSS -0.1864   0.03813           -4.89    <.0001 
S 4 1cm S 7 1cm -0.1106   0.03847           -2.87    0.0041            
S 4 1cm S 7 SSS -0.1531   0.03830           -4.00    <.0001 
S 4 1cm S 8 1cm -0.01556 0.03942           -0.39    0.6932            
S 4 1cm S 8 SSS -0.03440 0.03929           -0.88    0.3814            
S 4 1cm S 9 1cm 0.1388    0.06528           2.13     0.0335            
S 4 1cm S 9 SSS 0.08109   0.06528           1.24     0.2143            
S 4 SSS S 5 1cm -0.1442   0.03814           -3.78    0.0002            
S 4 SSS S 5 SSS -0.1319   0.03775           -3.49    0.0005            
S 4 SSS S 6 1cm -0.1431   0.03791           -3.78    0.0002            
S 4 SSS S 6 SSS -0.1767   0.03804           -4.64    <.0001 
S 4 SSS S 7 1cm -0.1008   0.03840           -2.63    0.0087            
S 4 SSS S 7 SSS -0.1434   0.03822           -3.75    0.0002            
S 4 SSS S 8 1cm -0.00582 0.03936           -0.15    0.8826            
S 4 SSS S 8 SSS -0.02466 0.03923           -0.63    0.5297            
S 4 SSS S 9 1cm 0.1486    0.06523           2.28     0.0228            
S 4 SSS S 9 SSS 0.09083   0.06523           1.39     0.1639            
S 5 1cm S 5 SSS 0.01236   0.03588           0.34     0.7306            
S 5 1cm  S 6 1cm 0.001074 0.03635           0.03     0.9764            
S 5 1cm S 6 SSS -0.03243 0.03648           -0.89    0.3742            
S 5 1cm S 7 1cm 0.04339   0.03683           1.18     0.2388            
S 5 1cm S 7 SSS  0.000853 0.03665           0.02     0.9814            
S 5 1cm S 8 1cm 0.1384    0.03771           3.67     0.0002            
S 5 1cm S 8 SSS 0.1196    0.03756           3.18     0.0015            
S 5 1cm S 9 1cm 0.2928    0.06434           4.55     <.0001 
S 5 1cm  S 9 SSS 0.2351    0.06434           3.65     0.0003            
S 5 SSS S 6 1cm -0.01128 0.03598           -0.31    0.7539            
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S 5 SSS S 6 SSS -0.04478 0.03613          -1.24 0.2152           
S 5 SSS S 7 1cm 0.03104  0.03648          0.85    0.3950           
S 5 SSS S 7 SSS -0.01150 0.03630          -0.32 0.7513           
S 5 SSS S 8 1cm 0.1261   0.03740          3.37    0.0008           
S 5 SSS S 8 SSS 0.1072   0.03725          2.88    0.0040           
S 5 SSS S 9 1cm 0.2805   0.06413          4.37    <.0001 
S 5 SSS S 9 SSS 0.2227   0.06413          3.47    0.0005 
S 6 1cm S 6 SSS -0.03350 0.03601          -0.93 0.3523           
S 6 1cm S 7 1cm 0.04232  0.03663          1.16    0.2480           
S 6 1cm S 7 SSS -0.00022 0.03644          -0.01 0.9952           
S 6 1cm S 8 1cm 0.1373 0.03768          & 3.64    0.0003           
S 6 1cm S 8 SSS 0.1185   0.03755          3.16    0.0016           
S 6 1cm S 9 1cm 0.2917   0.06425          4.54    <.0001 
S 6 1cm S 9 SSS 0.2340   0.06425          3.64    0.0003           
S 6 SSS S 7 1cm 0.07582  0.03679          2.06    0.0394           
S 6 SSS S 7 SSS 0.03328  0.03660          0.91    0.3632           
S 6 SSS S 8 1cm 0.1708   0.03782          4.52    <.0001 
S 6 SSS S 8 SSS 0.1520   0.03769          4.03    <.0001 
S 6 SSS S 9 1cm 0.3252   0.06431          5.06    <.0001 
S 6 SSS S 9 SSS 0.2675   0.06431          4.16    <.0001 
S 7 1cm S 7 SSS -0.04254 0.03670          -1.16 0.2464           
S 7 1cm S 8 1cm 0.09501  0.03805          2.50    0.0126    
S 7 1cm S 8 SSS 0.07617  0.03791          2.01    0.0446           
S 7 1cm S 9 1cm 0.2494   0.06453          3.87    0.0001           
S 7 1cm S 9 SSS 0.1917   0.06453          2.97    0.0030           
S 7 SSS S 8 1cm 0.1376   0.03791          3.63    0.0003           
S 7 SSS S 8 SSS 0.1187   0.03776         3.14    0.0017           
S 7 SSS S 9 1cm 0.2920   0.06443          4.53    <.0001 
S 7 SSS S 9 SSS 0.2342   0.06443          3.63    0.0003           
S 8 1cm S 8 SSS -0.01884 0.03844          -0.49 0.6241           
S 8 1cm S 9 1cm 0.1544   0.06499          2.38    0.0176           
S 8 1cm S 9 SSS 0.09665  0.06499          1.49    0.1371           
S 8 SSS S 9 1cm 0.1732   0.06487          2.67    0.0076           
S 8 SSS S 9 SSS 0.1155   0.06487          1.78    0.0751           
S 9 1cm S 9 SSS -0.05776 0.08206          -0.70 0.4816           
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