
I. INTRODUCTION

Road traffic accidents remain a worldwide public health concern. Reducing the occurrence rate and mitigating 
the injury severity of motor vehicle crashes are two major topics in the road traffic safety field. On the one hand, 
the recent development of highly automated vehicles (HAVs) is expected to improve traffic safety by avoiding 
potential collisions in hazardous conditions, categorised as active safety [1]. On the other hand, passive safety, 
such as vehicle body structure and occupant constraint design, significantly mitigates occupant injuries in road 
traffic accidents [2]. However, existing active and passive occupant protection systems are usually developed 
separately, failing to make the most use of the critical time window prior to a collision. This study aims to propose 
an occupant safety-focused vehicle driving strategy for minimal injury severity in imminent collision scenarios by 
integrating injury prediction into vehicle trajectory planning for application in the next generation of safer HAVs. 

II. METHODS

The framework of the safety-focused driving strategy is shown in Fig. 1. When on-vehicle sensors perceive an 
unavoidable obstacle, the HAV immediately estimates the collision condition and predicts the corresponding 
occupant injury severity in real-time. The optimal strategy is then solved under a rolling optimization method, 
with a discretized strategy space defined via vehicle dynamics model. We estimated the effectiveness of the 
whole framework in injury mitigation by reconstructing real-world collision accidents. 

Fig. 1. The framework of the safety-focused strategy for minimal injury risk in impending collision situations. 

Occupant injury prediction 
Δv prediction   We first estimated Δv before the collision given its strong correlation with occupant injury severity 
(Eq. 1). The collision severity estimation is based on the plane 2-DOF rigid-body collision model with momentum 
conservation (Fig. 2(a)) [3]. 

𝑃𝑃 =
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(1) 

where 𝑃𝑃  denotes the collision impulse; 𝑒𝑒  is the vehicle restitution coefficient; Coefficient 𝐶𝐶  depends on the 
principal impact direction in traffic accident reconstruction [3]. For the two vehicles in a collision (i.e. 𝑖𝑖 = 1 and 
2), 𝑣𝑣𝑖𝑖𝑛𝑛 indicates the velocity component in the impulse direction; 𝑚𝑚𝑖𝑖, 𝐼𝐼𝑖𝑖, 𝑤𝑤𝑖𝑖 and ℎ𝑖𝑖 denote the mass, the moment 
of inertia, the yaw rate, and the distance from CG to the impulse line, respectively. 
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Fig. 2. (a) The plane 2-DOF rigid-body collision model; (b) the 
plane vehicle bicycle model. 

TABLE I 
DESCRIPTION OF FOUR OPTIMIZATION LEVELS 

Optimization 
level 

Controllable 
objects 

Availability 
of V2VCs 

EUS Ego vehicle Unavailable 
EAS Ego vehicle Available 
MUS All vehicles Unavailable 
MAS All vehicles Available 

 

Injury prediction  With the recent progress in data-driven methods, deep learning algorithms have been 
integrated into occupant injury prediction and have demonstrated satisfying performance [4]. We established a 
convolutional neural network (CNN) developed in a previous study using a numerical driver injury dataset [5]. The 
CNN can predict the time histories of drivers’ kinetic responses from pre-crash information (Fig. 3). The kinetics 
were then translated into injury severity (i.e. abbreviated injury scale, AIS) based on the injury risk criteria. The 
CNN-based algorithm was validated in a real-world accident dataset from NASS/CDS and achieved a prediction 
accuracy of 78.7%, 95.6%, 90.2% for head, chest and neck AIS, respectively. The prediction was accomplished in 
near real-time. The mean probability of suffering head, chest and neck injury 𝑃𝑃(𝐴𝐴𝐴𝐴𝐴𝐴2+) was used to assess the 
driver’s injury severity. 

 
Fig. 3. The CNN-based driver injury prediction algorithm. 

Vehicle dynamics and strategies 
Dynamics modelling   The vehicle dynamics were modelled by the widely used plane bicycle model (Eq. 2 and Eq. 
3) (Fig. 2(b)). Considering that the vehicle dynamics usually dramatically change in impending collision situations, 
the vehicle tyre model with saturation was utilized to model the lateral tyre forces (Eq. 4): 

 �𝐹𝐹𝑦𝑦 = 𝑚𝑚(𝑣̇𝑣 + 𝑢𝑢𝑤𝑤𝑟𝑟) = 𝐹𝐹𝑦𝑦1 cos𝛿𝛿 + 𝐹𝐹𝑦𝑦2 , �𝑀𝑀𝑧𝑧 = 𝐼𝐼𝑧𝑧𝑤𝑤𝑟̇𝑟 = 𝑎𝑎𝐹𝐹𝑦𝑦1 cos𝛿𝛿 − 𝑏𝑏𝐹𝐹𝑦𝑦2 (2) 

 𝑥𝑥 = 𝑢𝑢 cos𝜃𝜃 − 𝑣𝑣 sin𝜃𝜃 , 𝑦𝑦 = 𝑣𝑣 cos𝜃𝜃 + 𝑢𝑢 sin𝜃𝜃 , 𝜃̇𝜃 = 𝑤𝑤𝑟𝑟 (3) 

 𝐹𝐹𝑦𝑦1 = �
−𝐶𝐶𝛼𝛼1𝛼𝛼1, 𝑖𝑖𝑖𝑖  𝛼𝛼1 < 𝛼𝛼1���
𝐹𝐹𝑦𝑦1����, 𝑖𝑖𝑖𝑖  𝛼𝛼1 ≥ 𝛼𝛼1���

,       𝐹𝐹𝑦𝑦2 = �
−𝐶𝐶𝛼𝛼2𝛼𝛼2, 𝑖𝑖𝑖𝑖  𝛼𝛼2 < 𝛼𝛼2���
𝐹𝐹𝑦𝑦2����, 𝑖𝑖𝑖𝑖  𝛼𝛼2 ≥ 𝛼𝛼2���

,       𝛼𝛼1 = 𝛽𝛽 +
𝑎𝑎𝑤𝑤𝑟𝑟
𝑢𝑢

− 𝛿𝛿,       𝛼𝛼2 = 𝛽𝛽 −
𝑏𝑏𝑤𝑤𝑟𝑟
𝑢𝑢

 (4) 

where 𝑚𝑚 denotes the vehicle mass; 𝐼𝐼𝑧𝑧 is the vehicle moment of inertia; 𝑎𝑎, 𝑏𝑏 are the distances from the centre of 
gravity (CG) to the rear or front axles; 𝑢𝑢, 𝑣𝑣 are the vehicle longitudinal or lateral velocities; 𝑤𝑤𝑟𝑟  is the yaw rate; 𝑥𝑥, 
𝑦𝑦 are the vehicle longitudinal or lateral positions; 𝜃𝜃 denotes the vehicle heading angle; 𝛿𝛿 is the front steering 
angle; 𝛽𝛽 = arctan(𝑣𝑣/𝑢𝑢) is the sideslip angle of CG. For the vehicle tyres (i.e. 𝑗𝑗 = 1 and 2 for the front and rear 
tyres, respectively), 𝐹𝐹𝑦𝑦𝑗𝑗 , 𝐹𝐹𝑦𝑦𝚥𝚥����, 𝛼𝛼𝑗𝑗, 𝛼𝛼𝚥𝚥�  and 𝐶𝐶𝛼𝛼𝑗𝑗  denote the lateral force, the saturated lateral force, the tyre sideslip 
angle, the saturated sideslip angle and the cornering stiffness, respectively. 
Discretized strategy space   The vehicle driving strategy space, i.e. longitudinal acceleration and lateral swerve, 
is continuous in reality. To balance the optimization and computational efficiency, we discretized the solving 
space into 25 strategies, comprised of five acceleration strategies (acceleration, half-acceleration, constant, half-
deceleration, deceleration) multiplied by five swerve strategies (left, half-left, straight, half-right, right) within the 
limit constraint of vehicle dynamics. 

Optimized strategy 
Rolling optimization  The optimized driving strategy was solved under a rolling optimization method in three 
steps: (I) estimate the dynamics of the ego vehicle (𝐸𝐸𝑡𝑡) and the surrounding vehicles (𝑆𝑆𝑡𝑡) at time step 𝑡𝑡; (II) predict 
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the potential collision conditions and occupant injuries 𝐽𝐽(∙) of 25 discretized strategies (𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 ) in the strategy 
space, respectively, then solve the optimization problem to obtain the optimal strategy that can result in the 
minimum injury severity 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡∗ = argmin

𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡
𝐽𝐽(𝐸𝐸𝑡𝑡 , 𝑆𝑆𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡); (III) get new measurements to update the estimation of 

vehicle dynamics (𝐸𝐸𝑡𝑡+1, 𝑆𝑆𝑡𝑡+1) at time step 𝑡𝑡 + 1 and repeat the optimization until the collision occurs. 
Optimization level  We defined the controllable objects as the vehicles for which driving strategies can be 
optimized. In addition, driving strategies of a HAV are closely related to the surrounding vehicles’ dynamics, which 
can be directly obtained based on vehicle-to-vehicle communications (V2VCs). Considering the controllable 
objects and the availability of V2VCs, we defined four levels for the safety-focused strategies (Table I): ego-
unavailable-level strategy (EUS); ego-available-level strategy (EAS); multi-unavailable-level strategy (MUS); multi-
available-level strategy (MAS). Only MAS can converge to a globally optimal solution; the others are locally 
optimal. When V2VCs were not available, we used a constant-speed model to predict the surrounding vehicles’ 
dynamics. Furthermore, autonomous emergency braking (AEB), a widely used active safety technology, was 
regarded as the baseline of injury mitigation. We assumed that the ego vehicle brakes immediately with the 
maximum deceleration when AEB is activated and that no evasive measures of swerving are allowed. 

Real-world accident data 
To estimate the proposed framework’s effectiveness, we reconstructed 20 real-world collision cases that 
represented typical impending collision situations screened from the China in-depth accident study (CIDAS) 
database, i.e. collisions between two sedans with at least one occupant who suffered MAIS2+ injuries. Each case 
has detailed information involving the vehicle (e.g. mass, size), occupant (e.g. age, gender), restraint system (e.g. 
belt, airbag) and vehicle dynamics (1 s before and 1 s after impact). The potential reduction in injury risk in the 20 
cases was calculated at different optimization levels. 

III. INITIAL FINDINGS 

Statistics analysis of injury mitigation 
The 20 real-world accidents were reconstructed with strategies at different optimization levels. The optimized 
strategies and the baseline (i.e. AEB) were set to be activated at different timings covering a 1 s critical time 
window prior to the collision. Figure 4 compares the effectiveness of four safety-focused strategies and AEB in 
injury mitigation. In terms of time sensitivity, the mitigation of injury severity is positively associated with the 
activation time for all strategies, i.e. the earlier it intervenes, the lower the injury severity can be obtained. There 
are apparent differences in injury mitigation among five strategies: MAS shows the best performance (e.g. 
mitigating injury severity by 100% and 37.8% when activated before -500 and -300 ms, respectively). The 
effectiveness of MUS, EAS, EUS and AEB follows in order. 

 
Fig. 4. Effectiveness comparison on injury severity mitigation compared with application to real-world accidents. 

Case study of optimized vehicle trajectory and corresponding injury 
One representative accident case is selected and analyzed in detail. Compared with Fig. 4, a similar variation trend 
of injury mitigation is found (Fig. 5(a)). The detailed vehicle trajectories and collision conditions demonstrate that 
compared with AEB and EAS, MAS successfully changes the potential impact point from the middle to the rear 
end of the vehicle, effectively reducing the driver’s injury severity (Fig. 5(b)). More specifically, Figure 5(c) exhibits 
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MAS’s detailed protection strategy from the time dimension: the earlier activation provides vehicles with 
sufficient time to pose their positions and orientations and move the impact point backward. 

Fig. 5. (a) The mitigation of injury severity in one representative case; (b) the optimized trajectories with different strategies 
(all strategies activate at -600 ms); (c) the optimized trajectories with different activation times (under MAS). 

IV. DISCUSSION

The present results demonstrate that integrating the occupant injury prediction algorithm into the vehicle 
driving strategy could significantly reduce crash risk and injury severity when confronted with imminent collision 
scenarios. Specifically, 100% and 37.8% of injury severity were mitigated when the globally optimal strategy (i.e. 
MAS) was activated at 500 ms and 300 ms before the collision, respectively. All four safety-focused strategies 
significantly outperformed AEB, demonstrating that the current vehicle occupant protection needs to be further 
improved. It should be highlighted that the current AEB may even aggravate injuries in some extreme cases as 
compared to human drivers in the real-world (i.e. negative injury mitigation in Fig. 4). In these cases, human 
drivers, who are probably experienced, perceived dangers early enough and took an appropriate combination of 
braking and swerving to better control vehicle dynamics than braking only by AEB. We also found similar 
phenomena in three safety-focused strategies (i.e. EUS, EAS, MUS) due to the incomplete perception information 
and the limited controllable objects. By comparison, the MAS manages to reduce injury risk in all situations. This 
indicates that there may be risks of aggravating injuries when using the locally optimal strategies. 

Several limitations should be noted. First, since detailed accident reconstructions take large amounts of 
manpower and material resources, we only obtained 20 real-world cases. The limited amount might reduce the 
reliability of statistical analysis and should be further expanded. Second, the CNN-based prediction algorithm is 
used in both the optimization and injury mitigation assessment, therefore the possible injury prediction error has 
not been considered. We also assumed that there is no out-of-position displacement of occupants, which might 
magnify prediction errors. Meanwhile, we have not yet considered the error and time delay of vehicle perception, 
decision and execution processes. As the injury severity prediction is a critical component of this framework, the 
effectiveness in a more realistic manner shall be assessed in subsequent studies. Finally, for performing a direct 
comparison, we largely simplified the complex activation mechanism in real on-vehicle AEB systems, which might 
have reduced its performance. Further efforts are necessary to produce more accurate and credible injury 
mitigation results of the proposed safety-focused strategies in imminent collision scenarios. 
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