
I. INTRODUCTION

Mild traumatic injury (mTBI), often caused by head impacts, can result in acute health consequences, such as 
unconsciousness, in post-concussive symptoms, including seizures, cognitive deficits and emotional disabilities 
[1-2], and even in long-term neurodegenerative diseases [3]. In sport-related mTBI, brain damage can 
accumulate with repetitive injuries if the mTBI goes undetected [4-5], necessitating quick and accurate 
evaluation of brain damage. The fast diagnosis and early warning approaches of mTBI are crucial in helping to 
prevent repetitive sport-related mTBI since the in-time intervention after early detection can attenuate the 
injury to a significant extent [6]. 

Previous work has shown that brain strain, particularly maximum principal strain (MPS), is a mechanical 
parameter that can accurately predict the risk of mTBI [7]. Currently, finite element (FE) modelling is used to 
calculate MPS [8-9], but such modelling requires expertise in biomechanics and at least several hours to run. 
Due to the amount of time involved and the lack of access to computational resources, the brain strain 
parameter is not widely used by medical professionals in diagnosing mTBI. For practical clinical applications, a 
fast and easy-to-use brain strain calculation method is needed.  

To address the costly computation of FE simulations and calculate the entire brain MPS, in this study a head 
model was developed to calculate the peak MPS of every element of the brain with deep learning. We used 
kinematic data (angular acceleration and angular velocity) of 2,130 impacts generated by FE simulations of 
Hybrid III anthropomorphic test dummy (ATD) head impacts and 381 impacts collected from on-field football 
and MMA games with a previously validated instrumented mouthguard. The KTH head model was used, which is 
a validated FE head model [10], to obtain the true brain MPS for comparison with the deep learning model. 
Engineered features with the temporal information of the kinematics were extracted, and a deep neural 
network (DNN) was developed to predict the MPS at each brain element.  

II. METHODS

Data description 
The data used in this study included: 2,130 head impacts simulated by a validated FE model of the Hybrid III ATD 
[11] (dataset HM); 184 on-field college football head impacts [12] collected by the original version of the
Stanford instrumented mouthguard [13] (dataset CF1); 118 on-field college football head impacts collected by
the updated Stanford instrumented mouthguard [14] (dataset CF2); and 79 mixed martial arts (MMA) head
impacts [5] collected by the updated Stanford instrumented mouthguard (dataset MMA). Based on the
measured kinematics, the KTH head model [15], a validated FE model for mTBI/TBI modelling, was used to
calculate the true MPS. 

Feature Engineering 
For each impact, we extracted features to aggregate the temporal information from the rotational kinematics 
for the deep learning model. First, angular accelerations  were calculated by 5-point stencil derivative 
on angular velocities . Then, the magnitudes and the components in each direction  of angular 
accelerations and angular velocities were defined as 8 channels (denoted as ). For each 
channel, six time-domain features were extracted based on the rationale of including the information of 
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1) Maximum value (8 features): max ; 
2) Minimum value (8 features): min ; 

3) Integral of the time-signal (8 features): ;  

4) Integral of the absolute values of time-signal (8 features): ; 
5) Maximum and minimum of the exponential moving average of the signal derivative (48 features) with 

three smoothing factors [16]; 
6) Information of extrema except max. and min. (80 features): the total number of positive extrema, the 

total number of negative extrema, the values of the second-largest to the fifth-largest positive extrema, 
the values of the second-smallest to the fifth-smallest negative extrema. This type of feature was 
extracted because repetitive impacts might have an accumulating effect on the brain deformation. Also 
note that the first largest and the smallest extrema were not selected since they were previously 
included already. 

 Upon feature engineering there was standardisation on the features and logarithmic transformations, as well 
as data whitening on the labels (MPS) to deal with feature unit mismatch, to avoid negative MPS predictions and 
to improve prediction accuracy.  

Model Development 
The deep neural network, as a proxy to conventional FE modelling, consisted of five layers besides the input 

layer, with 160 units, and the output layer, with 4,124 units: (1) Hidden layer 1: 300 neurons with the rectified 
linear unit (ReLU) as the activation; (2) Dropout layer 1 with a dropout rate of 0.5 and no activation; (3) Hidden 
layer 2: 100 neurons with ReLU as the activation; (4) Dropout layer 2 with a dropout rate of 0.5 and no 
activation; (5) Hidden layer 3: 20 neurons with ReLU as the activation. Dropout layers and L2 penalty were used 
to avoid overfitting. Mean squared error was used as the loss function, and adaptive moment estimation 
(Adam) optimizer was used as the optimizer.  
 
Model Evaluation 
The model accuracy was evaluated in three tasks: (1) basis (HM dataset); (2) on-field (CF1/CF2/MMA dataset); 
(3) mixture (all datasets). The datasets were partitioned into the training, validation and test sets according to 
Fig. 1, for model training, hyperparameters tuning (training epochs, learning rate, strength of L2 penalty), and 
model performance testing. To test model reproducibility and robustness, in basis and mixture tasks, we 
partitioned the dataset with randomness in 20 repeats; in the on-field tasks, we followed a 5-fold 
cross-validation testing pattern shown in Fig. 1. Data augmentation, illustrated in Fig. 1, was carried out with the 
addition of noise abiding by normal distributions with a mean of zero and standard deviations of 0.01 and 0.02 
times the standard deviation of the original data.  

To quantify the accuracy, mean absolute error (MAE), root mean squared error (RMSE), coefficient of 
determination R2 and Spearman coefficient of correlation (Spearman Corr.) were used as the metrics. 
Furthermore, to represent the overall brain strain and avoid numerical error in simulation, R2 and RMSE of 95% 
MPS were calculated over the impacts in the test set. The metrics (mean values of MAE, RMSE, R2, Spearman 
coefficient of correlation, 95% MPS R2 and 95% MPS RMSE) were evaluated by comparing the predicted and the 
true MPS at every element over all test impacts. A group of metrics quantifying the model accuracy in each 
repeat (basis/mixture task) or fold (on-field task) was calculated and the summary statistics (mean, median, STD, 
95% CI) of the metrics over repeats and folds were calculated. 
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Fig. 1. The description of dataset partition process and the function of each dataset. 

III. INITIAL FINDINGS 

The hyperparameters and model accuracy metrics for each task are listed in Fig. 2. The absolute error of MPS 
at every element was averaged over impacts and repeats/folds and the density distribution of the absolute 
error is plotted in Fig. 2. 

 
Fig. 2. The distribution of absolute error between predicted MPS (from our deep learning approach) and true MPS (from 
the KTH head model). The model information and the accuracy metrics on different prediction tasks are shown. 

 
To visualize the prediction accuracy, three cases were selected as the impacts with 30th, 60th and 90th 

percentile highest true 95% MPS over all test impacts of all repeats. Figure 3 shows that the brain regions with 
high strain were very similar in the predicted and true results, which indicates the model’s feasibility in 
diagnosing the region of injury with fast and accurate entire brain strain calculation. The MPS of each element 
plotted in Fig. 3 A-F were compared in Fig. 3 G-I. All scatters indicating MPS lie close to the reference line y=x, 
which shows that the predictions of MPS were accurate at every element of the brain. 
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Fig. 3. The visualization of three typical cases of predicted and true 95% MPS in the mixture task. 

IV. DISCUSSION

    Compared to the time-consuming FE modelling, this study provides a new approach to calculating brain 
strain as a substitute for the conventional FE modelling after head impact. The deep learning head model is 
much faster (<0.001 s as compared with 7–8 hours for FE modelling for one head impact) and can give accurate 
brain strain. In addition to providing researchers with a fast and accurate method of calculating brain strain that 
includes the brain strain of the entire brain, the deep learning head model makes it easier for non-experts in 
biomechanics to interpret brain damage in an understandable manner. This method will also allow players 
suffering from head impacts to monitor in real time those dangerous impacts that could lead to a mTBI.  

There are two limitations to this study. First, the feature extracted may not provide the best model accuracy. 
It is possible that without artificially engineering the features, other algorithms, such as convolutional neural 
network and recurrent neural network, may be better in terms of model accuracy. Secondly, the current model 
may not be accurate on those impacts outside of the domains under which the model was trained. More data 
from diverse sources can be used to improve the model accuracy. 
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