
 

 Abstract Recent advances in safety systems have reduced injuries sustained in motor vehicle crashes. However, 
unlike other body regions, rib fractures remain a common and serious injury in these events. The goal of this study 
was to assess the ability of basic individual demographic information to predict thoracic vulnerability. A normative 
sample of 317 experimentally-tested mid-level human ribs formed the foundation of this study, and the resulting 
structural properties of percent displacement, peak force, and total energy allowed for rib vulnerability levels to 
be defined for each property. Thresholds for these levels may be useful for alterations and assessment of rib FE 
models and improvement of thoracic scaling techniques. Additional results suggest that age, sex, stature, and 
weight may be utilized with caution for predicting those ribs that are least and most vulnerable, but are not useful 
for distinguishing those in between. Individuals more likely to have vulnerable ribs include those that are older 
with smaller body size, particularly females, but this is not always the case. Further investigation is necessary in 
order to identify more appropriate predictors for occupant vulnerability. 
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I. INTRODUCTION 

 
Despite vast improvements to recent injury mitigation systems in vehicles, thoracic skeletal injuries, i.e., rib 

fractures, are more likely to occur than injuries to any other body region in the event of a motor vehicle crash 
(MVC) [1]. Increasing age has been linked to frequency and severity of these thoracic injuries, and females tend 
to be at higher risk than males for rib fracture [2-3]. Furthermore, the occurrence of rib fractures from any cause 
leads to more serious outcomes for the elderly [4]. These data are very valuable as they are entirely based on 
real-world occurrences. However, these retrospective approaches can be difficult to interpret because all of the 
exact conditions and mechanisms of injury must be presumed or could be inaccurately reconstructed.  

Therefore, quantification of the relationship between age, sex, and body size of occupants, and their likelihood 
of experiencing rib fracture, if all other aspects of an MVC were to be precisely equal, remains unknown because 
this would require a large experimental dataset in order to control all external variables. Agnew and colleagues 
[5] published such a dataset and reported relationships between human rib structural properties and 
demographics. This approach is useful for understanding variance in rib response that can be explained by 
individual characteristics, but quantifying the effectiveness of using demographics to predict risk for rib fracture, 
or vulnerability to injury, requires a slightly different approach.  

Current injury assessment tools such as Human Body Models (HBMs) and Anthropomorphic Test Devices 
(ATDs) are generally less effective at representing demographics that vary from the average male, since most 
development in the past was focused on that demographic. Recent work [6] has highlighted the need for exploring 
more vulnerable populations in order to improve safety tools and establish more precise injury thresholds, but 
the biomechanical data to thoroughly do so are still lagging.  

The objective of this study was to identify individual occupant characteristics that correspond to various levels 
of vulnerability to rib fractures based on experimental testing results. This was accomplished by first binning 
experimental rib data into five vulnerability levels based on percentiles of structural properties (displacement, 
force, energy), conducting an array of statistical tests to identify how the demographic factors (age, sex, stature, 
weight) varied with vulnerability level, and then constructing a proportional odds logistic regression model to 
predict vulnerability for a given individual. 
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II. METHODS 

Sample 
Three hundred seventeen (n=317) mid-level (3-8) ribs representing various individual demographics were 

included in this sample. Male ribs comprised 230 of the ribs, while female ribs comprised 87. Despite the large 
number of male compared to female ribs, the age distribution between the sexes was not significantly different 
(two sample t-test, p=0.6), signifying that sex-specific comparisons were not biased by age. Ages ranged from six 
to 108 years (mean 52.6 ± 23.4 years). Individuals stature and weight at the time-of-death ranged from 117 to 
199 cm (mean 172.7 ± 11.3 cm) and 19 to 152 kg (mean 71.9 ± 19.3 kg), respectively. Age, sex, stature, and weight 
are the individual characteristics of interest in this study, and their distributions in the rib sample can be found in 
Fig. A1.  
 

Experimental Testing  
Excised whole human ribs were experimentally tested in a custom pendulum fixture representing a simplified 

frontal thoracic blunt impact. The fixture included a 6-axis load cell (CRABI neck load cell, IF-954, Humanetics, 
Plymouth, MI, USA) behind the stationary plate, and a linear string potentiometer (Rayelco P-20A, AMETEK, Inc. 
Berwyn, PA, USA) attached to the moving plate to measure force and displacement, respectively, in the primary 
loading direction (-X) as shown in Fig. 1. Rib ends were potted in Bondo® Body Filler (Bondo Corporation, Atlanta, 
GA, USA) allowing for a single-plane orientation and therefore translation of the sternal rib end towards the 
vertebral end during this 2D bending event. Dynamic impacts were conducted at 2 m/s (~0.5 strain/s) with the 
goal of loading ribs to failure. Additional details of rib preparation can be found in [5]. 

 
 

 
Fig. 1. Experimental test set-up with rib in fixture pre-

impact (adapted from [7]) 
 

 

Data Analysis 
Force and displacement data were filtered using a CFC180 filter [5].  Utilizing the force-displacement (F-D) curve 

from each impact, peak displacement and peak force (Fpeak) were defined as the maximum displacement and 
force, respectively, in the primary loading direction prior to fracture. Peak displacement was then normalized by 
the original mechanical span of each rib to calculate a percent displacement (δ), referred to simply as 
displacement throughout the manuscript. Total energy (Utot) was calculated as the area beneath the F-D curve 
from time zero to time of failure.  

The structural properties of percent displacement (δ), peak force (Fpeak), and total energy (Utot) were each 
divided into five levels of vulnerability per rib based on the accumulation of 20th percentiles: 1 was defined as 
most vulnerable and 5 as least vulnerable. It was assumed that lower structural property values were equivalent 
to greater vulnerability. Differences in vulnerability levels were first explored relative to age, stature, and weight 
using Analysis of Variance (ANOVA) with Tukey’s post-hoc tests to identify sources of potential differences 
between each level. Once differences were identified, the ability to predict vulnerability based on individual 
demographics was assessed. For each structural property, a proportional odds logistic regression model in R 
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statistical computing software (v. 3.6.3) was fit using the polr function from the Modern Applied Statistics with S 
(MASS) package to classify individual ribs into vulnerability levels 1 through 5 using the demographic covariates. 
For the purposes of fitting these models, vulnerability level was considered an ordinal variable and predictors 
from the available covariates were selected using the Bayesian Information Criteria (BIC) model selection 
technique for each model. This approach assumes that for each level j = 1, . . . 5, the log odds ratio 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑌𝑌≤𝑗𝑗)

𝑃𝑃(𝑌𝑌>𝑗𝑗)
) is 

a linear function of the covariates. This linear function is allowed a different intercept for each j, but assumed to 
have the same slope for all j. The coefficient βi associated with a predictor can be interpreted as the change in 
the log odds ratio 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑌𝑌≤𝑗𝑗)

𝑃𝑃(𝑌𝑌>𝑗𝑗)
) when that predictor is increased by 1 unit, and this quantity is the same for all j = 

1, . . . 5. It is then possible to use the predicted log odds ratios for a given set of covariates to compute the 
predicted probability that an individual with those covariates falls into each of the 5 vulnerability levels. The 
predicted vulnerability level for a rib from an individual with a given set of characteristics was then taken to be 
the vulnerability level that the model assigns the highest probability of that individual’s rib falling into. 

 To test whether the estimated coefficients in the proportional odds logistic regression were different from 
0, the following approach was utilized: for each predictor, the Central Limit Theorem implies that the estimated 
coefficient divided by its standard error is asymptotically normally distributed with mean 0 and standard deviation 
1. Since the sample is sufficiently large, an approximate z-test was applied to obtain p-values for the test of the 
hypothesis: H0: βi = 0 versus  H1: βi ≠ 0  

for each of the predictors. Additionally, for each vulnerability level, 1 through 5, an individual was identified in 
the sample whom the model assigned the highest probability of falling into that particular vulnerability level. 
These individuals, along with their characteristics, are presented as informal exemplars of each level. 

A subsample was subsequently identified with the goal of separating out only two extremely distinct groups 
vulnerable and invulnerable based on the combination of all structural properties. The vulnerable category was 
defined by those ribs that previously scored a level 1 vulnerability for at least two of the structural properties and 
a level 2 vulnerability in the third. The invulnerable category was similarly defined by those ribs that previously 
scored a level 5 vulnerability for at least two of the structural properties and a level 4 vulnerability in the third. 
Coincidently, this resulted in both groups including 49 ribs each. Differences in age, stature, and weight between 
vulnerable and invulnerable ribs were assessed using ANOVA, and differences in sex were assessed using a Chi-
squared association test. An alpha (α) value of 0.005 was used to determine statistical significance.  
 

III. RESULTS 

 
Descriptive statistics for each level of vulnerability (1-5) for each structural property independently are 

presented in Table I. These include the mean and one standard deviation as well as the range (minimum to 
maximum) for each property and associated time at fracture (Timefx) for each vulnerability level. Because there 
was a strong positive linear relationship between percent displacement and time at fracture, it is possible to 
predict fracture timing from percent displacement (Linear Regression, adj. R2 = 83.4%, p<0.0001, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓 =
9.019 + 0.9867δ) to alter rib FE models if desired. 

ANOVA was utilized to explore preliminary differences between the five vulnerability levels for each 
continuous variable, i.e., age, stature, and weight, by individual structural properties. Results of this exploration 
can be found in Table II and Fig. A2. Vulnerability levels were able to be delineated by age for displacement 
(p<0.0001, Fig. 2a), peak force (p=0.001), and total energy (p<0.0001). Common to all three, post-hoc analyses 
identified the least vulnerable level (5) as significantly different than the other levels. Vulnerability levels were 
successfully delineated by stature (Fig. 2b) and weight for peak force (p<0.0001), with level 1 identified as 
significantly different than the other levels. Similarly, stature and weight were significantly different between 
the most vulnerable (1) and least vulnerable (4-5) levels for total energy (p=0.004, p<0.0001, respectively).  
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TABLE I 
DESCRIPTIVE STATISTICS OF RIB PROPERTIES FOR FIVE VULNERABILITY LEVELS* 

 1 2 3 4 5 

 
Mean(SD) 
Min-Max 

Mean(SD) 
Min-Max 

Mean(SD) 
Min-Max 

Mean(SD) 
Min-Max 

Mean(SD) 
Min-Max 

Displacement 

δ (%) 
12.7(1.5) 

0-14.7 
17.1(1.5) 
14.8-19.5 

21.1(1.1) 
19.6-23.3 

26.7(2.2) 
23.4-30.2 

43.4(11.2) 
30.3-68.5 

Timefx (ms) 
21.2(3.8) 
11.3-26.8 

25.6(4.5) 
16.8-34.3 

30.9(4.9) 
20.8-41.6 

36.3(5.6) 
21.4-46.8 

50.6(14.5) 
29.0-101.0 

Peak Force 

Fpeak (N) 
49.5(12.4) 

0-65.8 
77.0(5.3) 
65.9-85.5 

98.6(6.8) 
85.6-111.0 

125.5(9.1) 
111.1-140.6 

176.2(33.3) 
140.7-299.8 

Timefx (ms) 
27.8(7.4) 
11.3-46.3 

32.9(14.4) 
12.8-81.9 

31.3(11.9) 
15.9-85.5 

37.4(14.9) 
14.7-101.0 

35.0(11.9) 
13.8-85.6 

Total Energy 

Utot (N*mm) 
993(314) 
0-1416 

1733(221) 
1417-2166 

2626(307) 
2167-3228 

4166(554) 
3229-5299 

7922(2609) 
5300-16154 

Timefx (ms) 
22.8(4.6) 
11.3-32.9 

26.6(6.1) 
14.6-39.4 

31.5(6.6) 
15.9-46.3 

34.3(8.5) 
13.8-55.2 

49.4(15.0) 
24.8-101.0 

*1=most vulnerable, 5=least vulnerable. SD= one standard deviation. Timefx= time of fracture 
 

 
TABLE II 

ANOVA RESULTS FOR VULNERABILITY LEVELS 
 Displacement Peak Force Total Energy 
 R-sq (adj) % p-value R-sq (adj) % p-value R-sq (adj) % p-value 

Age 28.4 <0.0001 4.5 0.001 18.8 <0.0001 
Differences 5<(1=2=3=4) (4=5)<1 5<(1=2=3=4) 

Stature 0.3 0.30 12.3 <0.0001 3.7 0.004 
Differences None 1<(2=3=4=5) 1<(4=5) 

Weight 0.2 0.35 14.5 <0.0001 6.5 <0.0001 
Differences None 1<(3=4=5) 1<(4=5) 

Differences are results of Tukey post-hoc tests between vulnerability levels 
 
 
 

  
Fig. 2a. Interval plot (mean and 95% CI) comparing 
age between vulnerability levels for displacement. 

Level 5 is significantly different (p<0.0001). 

Fig. 2b. Interval plot (mean and 95% CI) comparing 
stature between vulnerability levels for peak force. 

Level 1 is significantly different (p<0.0001). 

54321

70

60

50

40

30

20

Vulnerability Level

Ag
e 

(y
rs

)

DISPLACEMENT

54321

180

175

170

165

160

Vulnerability Level

St
at

ur
e 

(c
m

)

PEAK FORCE

IRC-20-88 IRCOBI conference 2020

798



 

Since differences between vulnerability levels were successfully established using a simple ANOVA, the next 
step was to explore the capacity to classify individuals accurately into vulnerability levels utilizing a predictive 
model. In order to quantify the ability to use age, sex, stature, and weight to predict vulnerability, a 
proportional odds logistic regression was utilized. Figs. A3-A5 provide visual representation of this approach to 
exploring initial relationships between predictor combinations by vulnerability levels.  

Figs. 3-5 and Table III display the results of classifying individuals with the proportional odds logistic 
regression models for each of the three structural properties. For displacement, the proportional odds logistic 
regression model incorporated age, sex, and stature, with only age and sex making significant contributions to 
the model. The peak force model incorporated age, sex, weight, stature, and the interaction of age*sex. For this 
model, sex was not a significant contributor on its own, but was when accounting for interaction with age. For 
total energy, the model included age, weight, stature, sex, and the interaction of age*sex. Age and sex 
significantly contributed to all three models in some way. Stature did not contribute predictive value to any of 
the models, but weight did for peak force and total energy. Details for each individual model are in Table III. 

In general, the proportional odds logistic regression models were fairly successful in predicting vulnerability 
levels 1 and 5, and, on average, assigned higher predicted vulnerability to ribs from actual higher levels. 
However, all models were less successful at predicting and differentiating among the middle levels, 2-4. In 
particular, the displacement model predicted levels 1 and 5 well (Fig. 3), and the peak force model predicted 
level 1 well (Fig. 4). The total energy model was less successful than the others at prediction of levels 1 and 5 
(Fig. 5). 

Additionally, the model was queried to select an individual rib as the best representation of each vulnerability 
level for each property, chosen based on having the highest probability of falling within that level. This is 
reported as demographics for each selected rib as well as a comparison between the predicted vulnerability and 
the actual vulnerability (Table IV). For all three properties, the predicted and actual vulnerabilities matched for 
level 1 and level 5, indicating these models utilizing the predictors previously discussed can successfully identify 
those on the extremes of vulnerability. However, the model was rarely able to accurately predict levels 2-4. In 
only two cases out of nine possible, did the predicted and actual vulnerabilities match in the middle levels. 

 
 

TABLE III 
PROPORTIONAL ODDS LOGISTIC REGRESSION MODELS 

Chosen Parameters: Age Male† Stature   

δ 
model 

βi Coefficient -0.0500 -1.1213 0.0240   
Std. Error 0.0052 0.2820 0.0105   
P-value <0.0001 <0.0001 0.023   

Chosen Parameters: Age Male† Weight Stature Age:Male† 

Fpeak 
model 

βi Coefficient -0.0559 -1.1522 0.0279 0.0163 0.0437 
Std. Error 0.0105 0.6257 0.0068 0.0125 0.0119 
P-value <0.0001 0.065 <0.0001 0.191 0.0002 

Chosen Parameters: Age Weight Stature Male† Age:Male† 

Utot 
model 

βi Coefficient -0.0742 0.0224 0.0221 -2.1693 0.0428 
Std. Error 0.0101 0.0068 0.0124 0.6166 0.0115 
P-value <0.0001 0.001 0.075 0.0004 0.0002 

†Coefficients can be applied as listed if reference is male. Significant p-values are bolded. 
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Fig. 3. Comparisons of actual versus predicted classifications of vulnerability (levels 1-5) for displacement. The 

shaded boxes on the vertical axes indicate what proportion of individuals in each vulnerability level (actual) 
were assigned to each level (predicted) by the proportional odds logistic regression model. Level 1 is the 

darkest, level 5 the lightest. 
 
 
 

 
Fig. 4. Comparisons of actual versus predicted classifications of vulnerability (levels 1-5) for peak force.The 
shaded boxes on the vertical axes indicate what proportion of individuals in each vulnerability level (actual) 

were assigned to each level (predicted) by the proportional odds logistic regression model. Level 1 is the 
darkest, level 5 the lightest. 
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Fig. 5. Comparisons of actual versus predicted classifications of vulnerability (levels 1-5) for total energy. The 
shaded boxes on the vertical axes indicate what proportion of individuals in each vulnerability level (actual) 

were assigned to each level (predicted) by the proportional odds logistic regression model. Level 1 is the 
darkest, level 5 the lightest. 

 
 

TABLE IV 
REPRESENTATIVE INDIVIDUALS FOR EACH VULNERABILITY LEVEL 

 
Predicted 

Vulnerability 
Age 
(yrs) 

Sex 
Stature 

(cm) 
Weight 

(kg) 
Structural 
Property 

Actual 
Vulnerability 

Match 

δ (%) 
model 

1 97 M 149.9 78.9 14.6 1 YES 
2 75 M 183.0 84.8 21.6 3 NO 
3 52 M 181.0 83.0 11.5 1 NO 
4 29 M 180.3 90.0 39.0 5 NO 
5 11 F 160.2 50.5 51.38 5 YES 

Fpeak (N) 
model 

1 92 F 142.2 32.2 40.9 1 YES 
2 22 M 139.7 29.5 76.7 3 NO 
3 71 M 180.0 68.0 105.2 3 YES 
4 17 F 165 76.0 145.8 5 NO 
5 24 F 165.1 152.0 206.7 5 YES 

Utot 
(N*mm) 
model 

1 92 F 142.2 32.2 926 1 YES 
2 86 M 185.4 56.2 1328 1 NO 
3 62 M 172.7 84.4 551 1 NO 
4 44 M 182.9 99.8 4310 4 YES 
5 18 F 167.6 136.0 6455 5 YES 

 
 

When all structural properties were combined to create only two extreme subsamples of vulnerable or 
invulnerable, all differences between these two groups for age, stature, weight, and sex were highly significant 
as shown in Table V (p<0.001). This analysis was conducted in order to identify the features of occupants most 
at risk for rib fractures. Those individuals with vulnerable ribs were, on average, older and smaller in both 
stature and weight. Expected versus observed frequencies of sex in each category were also significantly 
different. However, this was likely driven by an imbalance between numbers of males and females in the 
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invulnerable category (M>F). While it was expected that more females would be represented than males in the 
vulnerable category, this was not the case, as both sexes were essentially equally represented. In other words, 
while males are more likely than females to have invulnerable ribs, they are equally likely to have vulnerable 
ribs as females.  

 
 

TABLE V 
DEMOGRAPHIC COMPARISONS BETWEEN VULNERABLE AND INVULNERABLE GROUPS 

 Vulnerable (n=49) Invulnerable (n=49) 
p-value 

 Mean(SD) 95% CI Mean(SD) 95% CI 
Age (yrs) 68.8(20.5) 63.4,74.3 35.6(17.7) 30.2 41.1 <0.0001 

Stature (cm) 168.5(11.7) 165.7,171.3 177.1(7.7) 174.3,179.9 <0.0001 
Weight (kg) 63.7(17.7) 58.7,68.7 81.0(17.5) 76.0,86.0 <0.0001 

Sex† M(26), F(23) M(41), F(8) <0.001 
ANOVA was used for all comparisons except for sex. †Actual frequencies for sexes in each 

category are reported here and were used in a Chi-Square Test for association.  
 
 

IV. DISCUSSION 

 
The findings presented in the current study are consistent with real world data that identifies elderly, small 

individuals as being the most vulnerable vehicle occupants [8]. However, these results are more impactful than 
simply reiterating existing observations. Because of the vast size of the sample in the larger rib study this is a part 
of, these data can be interpreted as a normative dataset, allowing for the opportunity to provide thresholds and 
targets for displacement, force, and energy relative to time at fracture in order for researchers to assign levels of 
vulnerability to ribs in FE models.  
  Based on the simple assessment of vulnerability level differences via ANOVA, a few broad trends emerged. 
First, contrary to the common approach, i.e., advanced age is often used as an explanation of increased fragility, 
age appears to be most useful in identifying those ribs which are least vulnerable, i.e. in level 5, while differences 
in age between the other vulnerability levels are more subtle. In other words, it is possible to more confidently 
conclude that younger individuals have less vulnerable ribs than to say that older individuals have more 
vulnerable ribs. This is most apparent for vulnerability based on structural properties of displacement and total 
energy. Age is less effective in identifying the least vulnerable using peak force, but this simple analysis is capable 
of delineating vulnerability levels 4 and 5 together from the more vulnerable levels. Next, stature and weight 
follow similar patterns to each other and these trends allow for identification of those ribs which are most 
vulnerable (the opposite of what age told us). Those individuals that are short in stature and weigh less, i.e., small 
body size, have ribs which are most vulnerable, i.e., in level 1, for peak force and total energy (no relationships 
exist with displacement). Differences between the other vulnerability levels are not as clear for body size 
parameters. This may suggest that some component of the increased injury risk seen for very small or large 
occupants may not necessarily be dictated by intrinsic variability in the bone itself, but rather to external 
influences (e.g., mass effects on kinematics, belt interaction and fit) [9]. 

Sex was a significant contributor, either alone or when interacting with age, for all regression models. This 
further strengthens the evidence that females are not just simply smaller versions of males [10], and supports 
future work to evaluate fracture risk and vulnerability independently in females, in parallel with males. Injury 
thresholds have not often been experimentally derived separately for the sexes, and quantification of these 
differences may have large effects on scaling and interpretation of data in HBMs and ATDs.  

Utilizing proportional odds logistic regression models, it was possible to fairly successfully predict the least and 
the most vulnerable individuals, but this was not the case for the majority of individuals that fell between these 
extremes. None of the models predicted a vulnerability level 1 for a rib that was actually a 5. Similarly, the peak 
force (Fig. 4) and total energy (Fig. 5) models never predicted a level 5 when a rib was actually a 1, but this type 
of error did occur in the displacement model (Fig. 3). When exploring the model’s selection of the most 
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representative individual for each vulnerability level (Table IV), the greatest discrepancy seemed to exist for not 
only the middle levels, but specifically for level 3. For both displacement and energy models, selected individuals 
to best represent level 3 were actually a level 1. This direction of prediction error could have major implications. 
However, in most other cases where vulnerability level was not matched between actual and predicted, the 
model predicted the representative individual to be more vulnerable than they actually were (e.g., the force 
model predicted a level 4 but the individual was actually a level 5). In terms of developing mitigation strategies 
for occupant injury, it is more desirable to overpredict vulnerability than to underpredict it. In other words, safety 
technology should target protection of the most vulnerable occupants, assuming the others will also be protected. 
Further exploration is necessary to minimize and direct such errors as well as differentiate the middle vulnerability 
levels for future applications. 

Multiple researchers have attempted to predict rib structural properties utilizing demographic information 
[5][7][11][12], but none have attempted to predict individual characteristics based on a normative dataset 
defining vulnerability as was done here.  These previous studies were variably successful in identifying 
relationships between age, sex, and body size with rib properties, but concede that most variability in rib response 
to loading remains unexplained, and that further research is necessary. Even when taking the fresh approach 
presented here, the highest proportion for a successful prediction was about 75% (vulnerability level 5 for the 
displacement model), while the other most successful predictions only reached approximately 50-60% (generally 
levels 1 and 5 for all models). This suggests it is important to explore additional new variables in future work to 
predict differential rib fracture risk and biomechanical response to define occupant vulnerability. 

There were several limitations to this study. The rib dataset included considerably more males than females, 
and non-normal stature and weight data. Although all approaches utilized here were robust against these data 
inconsistencies, they could possibly bias the results. The experimental data were acquired from a simplified 2D 
bending scenario on excised ribs. The boundary conditions of the test were deliberately oversimplified in order 
to ensure repeatability in loading, but did not consider rib angle or an offset for costal cartilage. Additionally, 
isolated ribs will never be loaded in real events, as each rib is, of course, only a part of the larger articulated 
thorax. It is unknown how these results may translate to full thoracic response and injury risk. In spite of the lack 
of a normative dataset for full body experimental testing, this rib dataset, the largest known collection of 
biomechanical data on various individuals, can fill an important gap in knowledge for the vehicle safety 
community. 
 

V. CONCLUSIONS  

 
Until new technologies arise that allow for direct measurement of rib bone quality and associated fracture risk, 

researchers can utilize these results to identify general rib vulnerability for an occupant based on basic 
demographic information. This should be attempted with caution until it is possible to increase the proportional 
odds of classifying individuals with greater confidence. Furthermore, the thresholds for vulnerability levels based 
on the normative dataset presented here can be utilized in rib FE models and HBMs to explore vulnerable 
occupant rib response. Age and sex varied considerably between vulnerability levels, while stature and weight 
showed more variable results, but still some value in identifying rib vulnerability: relatively young individuals and 
males tended to have less vulnerable ribs, while those with smaller body size tended to have more vulnerable 
ribs. This approach was most successful at predicting the particularly vulnerable or particularly invulnerable ribs 
based on demographics. 
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VIII. APPENDIX 

 

 

 

 
Fig. A1. Histograms of age (top), stature (middle), and weight (bottom) by sex showing distributions of ribs 
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TABLE AI 
DESCRIPTIVE STATISTICS FOR DEMOGRAPHICS BY STRUCTURAL PROPERTIES AND VULNERABILITY LEVELS* 

 1 2 3 4 5 

 
Mean(SD) 

95% CI 
Mean(SD) 

95% CI 
Mean(SD) 

95% CI 
Mean(SD) 

95% CI 
Mean(SD) 

95% CI 
Displacement 

Age (yrs) 
66.6(18.9) 
61.7,71.6 

62.0(19.8) 
57.1,66.8 

54.3(22.8) 
49.4,59.2 

49.7(22.0) 
44.8,54.6 

30.1(14.7) 
25.2,35.0 

Stature (cm) 
172.7(8.3) 

169.9,175.5 
173.8(11.5) 
171.0,176.5 

173.9(11.1) 
171.1,176.7 

173.1(13.8) 
170.3,175.9 

170.0(10.5) 
167.3,172.8 

Weight (kg) 
73.5(16.6) 
68.7,78.2 

71.6(20.0) 
66.9,76.4 

67.9(16.4) 
63.1,72.7 

71.9(18.7) 
67.2,76.6 

74.7(23.6) 
69.9,79.5 

Sex† M(50), F(13) M(49), F(15) M(50), F(13) M(44), F(20) M(37), F(26) 
Peak Force 

Age (yrs) 
61.0(26.8) 
55.4,66.7 

54.2(24.1) 
48.6,59.8 

54.8(22.0) 
49.1,60.5 

46.1(21.8) 
40.5,51.7 

46.7(18.9) 
41.1,52.4 

Stature (cm) 
165.0(11.8) 
162.4,167.6 

172.7(11.7) 
170.1,175.3 

174.0(12.4) 
171.4,176.6 

174.8(7.7) 
172.2,177.4 

177.1(8.2) 
174.5,179.7 

Weight (kg) 
58.7(16.6) 
54.2,63.1 

69.5(17.6) 
65.1,73.9 

73.6(19.1) 
69.1,78.0 

76.9(17.0) 
72.5,81.2 

81.0(18.8) 
76.5,85.4 

Sex† M(27), F(36) M(44), F(20) M(53), F(10) M(53), F(11) M(53), F(10) 
Total Energy 

Age (yrs) 
65.5(22.2) 
60.3,70.7 

57.4(24.2) 
52.1,62.7 

55.5(21.6) 
50.3,60.8 

49.0(19.7) 
43.8,54.2 

35.1(17.8) 
29.8,40.3 

Stature (cm) 
168.3(12.6) 
165.6,171.0 

173.2(8.8) 
170.4,176.0 

172.6(14.1) 
169.8,175.3 

173.9(10.3) 
171.1,176.6 

175.8(8.4) 
173.0,178.5 

Weight (kg) 
64.3(19.2) 
59.8,68.9 

69.4(15.5) 
64.7,74.0 

70.3(18.1) 
65.7,74.9 

76.2(20.1) 
71.6,80.8 

79.4(19.9) 
74.8,84.1 

Sex† M(39), F(26) M(47), F(15) M(48), F(15) M(48), F(16) M(48), F(15) 
*1= vulnerable, 5=least vulnerable. †Sex is frequency of M (males) and F (females) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IRC-20-88 IRCOBI conference 2020

806



 

 Age Stature Weight 
δ 

   

F p
ea

k 

   

U
to

t 

   
Fig. A2. Interval plots (mean and 95% CI) comparing all combinations of structural properties and 

demographics by vulnerability levels to accompany ANOVA results in Table II and AI 
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Fig. A3. Exploratory data analysis for all combinations of individual characteristics by vulnerability level 
(see legend) for displacement. Clustering of light datapoints (vulnerable) versus dark datapoints (less 

vulnerable) indicates which variables can best distinguish between vulnerability levels. Specific 
observations to note include: 1) for each sex, vulnerability is greater at older ages, but sex differences in 

vulnerability do not seem evident with trends of weight or stature, 2) clustering by age is apparent across 
all variables, and 3) no vulnerability clustering is apparent for interactions of weight and/or stature. 
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Fig. A4. Exploratory data analysis for all combinations of individual characteristics by vulnerability level 

(see legend) for peak force. Clustering of light datapoints (vulnerable) versus dark datapoints (less 
vulnerable) indicates which variables can best distinguish between vulnerability levels. Specific 

observations to note include: 1) vulnerability is greater at older ages, particularly for females, 2) clustering 
by age is not as apparent across variables, and 3) vulnerability clustering is apparent for interactions of 

weight and/or stature, especially for extreme vulnerability (level 1). 
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Fig. A5. Exploratory data analysis for all combinations of individual characteristics by vulnerability level 

(see legend) for total energy. Clustering of light datapoints (vulnerable) versus dark datapoints (less 
vulnerable) indicates which variables can best distinguish between vulnerability levels. Specific 

observations to note include: 1) vulnerability is greater at older ages, and 2) clustering is present for 
interactions of weight and/or stature, notably for vulnerability level 1. 
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