
 

  

 
Abstract Postural information of drivers is helpful for specifying take-over control as well as for 

developing intelligent protection systems in autonomous vehicles. Thanks to the ease of use and the 
robust performance under varying environments, a pressure sensor could be a good alternative or 
complementary to cameras for monitoring drivers’ postures, especially for the trunk and feet. 
However, association between pressure distribution and posture is still unclear, effective methods for 
postural classification from pressure measurement therefore need to be developed. 

The objective of this study was to propose a method for extracting relevant features from the 
original pressure distribution data to predict drivers’ posture. First, a large number of pressure 
parameters, including contact area proportions, centres of pressure and pressure ratios, were defined 
for generating pressure features and the relevancy was analysed by performing the Out-Of-Bag 
feature importance evaluation of a Random Forest classifier. Finally, the relative value changes of 15 
important parameters were used as features for training the classifier, leading to an average accuracy 
of 77.4% across nine posture classes and 23 drivers in the Leave-One-Out cross-validation tests. This 
study will provide valuable insight for extracting features in order to develop robust postural 
monitoring systems using pressure measurement.  
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I. INTRODUCTION 

Over 1.35 million fatalities and more than 50 million serious injuries worldwide each year are 
claimed by road traffic accidents [1], most of which have been reportedly attributed to human errors 
in recognition, decision and performance [2]. Driving automation has great potential of 
accommodating human errors, but also gives rise to new types of safety concerns. One critical issue 
concerns the transition between the human driver manoeuvres and automated operations. For the 
autonomous vehicles of Level 3 (SAE), human drivers are required to stay within the control loop, it is 
imperative to monitor drivers’ behaviour to evaluate his/her intention and readiness for a safe 
transition [3]. Another consistently mentioned topic is the passive safety in autonomous vehicles. With 
the increased diversity of in-vehicle activities and the innovation of seating arrangements [4], drivers 
may adopt other seated postures than the conventional driving position. Existing restraint systems 
may not provide efficient protection for these new postures in case of accidents. To reduce the injury 
risk, a possible solution could be the development of an intelligent system that can adjust the seat 
configuration prior to collision [5] and modulate the response of the restraint system during collision 
[6], based on the real-time tracking of driver posture. 

Driver posture can be monitored by means of different methods [7], such as computer vision or 
pressure measurement based systems, among many others. Being able to provide visual details, 
cameras are playing a predominant role in this domain. However, the performance of camera-based 
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monitoring systems is subject to lighting condition, camera placement in the cabin and the occurrence 
of body occlusions in the field of view. In contrast, pressure sensors can be unobtrusively integrated 
into a seat and do not suffer from the limitations exhibited by cameras. Pressure sensor could be a 
good alternative or complementary to optical vision systems, i.e., cameras, for monitoring driver 
postures, especially for the trunk and feet. 

In recent years, there has been growing interest in using pressure measurement as an approach 
for driver monitoring. Reference [8] used a Support Vector Machine (SVM) classifier which was trained 
directly by the raw pressure measurements on both backrest and seat pan collected from a driving 
simulator to classify eight driver activities (pressing accelerator, looking right/left, looking right/left 
rear, holding phone right/left and pressing brake). Seven drivers participated in the experiment and a 
total estimation error of 41% was found for the test data randomly selected from all the participants. 
The authors also performed an on-road experiment to detect only feet behaviours for predicting pedal 
engagement using the same method. An average estimation error of 7.55% has been claimed. 
However, in both cases, they did not test the classifier on a new driver whose data was not used for 
training. Reference [9] also used the SVM technique. Apart from the original pressure measurement 
from backrest and seat pan, the authors added the changes of the Centre of Pressure (COPs) with 
respect to their normal positions as explanatory variables to distinguish three activities including cell 
phone use, forward gaze (normal state) and sleeping performed by 14 drivers. An accuracy of 76.8% 
by the Leave-One-Out (LOO) cross-validation for new drivers was achieved. In both studies [8-9], the 
authors intended to predict predefined driver postures directly from the pressure measurement, 
without explicitly specifying the driver trunk positions. As pressure results from the contact between 
the trunk and thighs with the seat, activities mainly involving the movement of head or hands without 
trunk movement are difficult to be detected. This may explain why a low classification accuracy was 
obtained by the both studies (i.e., 15% and 20% were determined for looking right/left in [8] and 59.6% 
for the forward gaze in [9]). In [10], an array of force sensors were deployed to detect if a driver was 
in Out-Of-Position (OOP). To consider the inertia effect by vehicle dynamics, an accelerometer was 
implemented to monitor the vehicle acceleration. By analysing the COP trajectories and vehicle 
acceleration, three types of OOP (forward, left and right inclined trunk positions) could be detected. 
However, the system was not evaluated quantitatively.  

In our earlier study [11], nine classes of in-vehicle postures from 23 drivers were identified by 
analysing the trunk and feet positions. In contrast to other studies [8-10], our posture classes covered 
a wider range of driver postures that a driver can adopt when driving or performing non-driving tasks. 
A deep learning classifier was trained on the pressure distribution images to detect these postures. 
An average classification accuracy of up to 94% was obtained for a driver whose data was used for 
training the classifier. The same classifier was also used to continuously predict postural changes 
during a motion. By tracking the class score changes, driver postural change could be correctly 
predicted. For the LOO cross validation tests, however, the classification accuracy dropped to 51% on 
average and the continuous prediction also suffered. One reason may be that pressure distribution 
changes due to inter-individual variability (e.g., body size, seating preference) were not separated 
enough from those by postural change. Essentially, the continuous prediction depended on the 
classification accuracy. Therefore, a reliable classifier plays a key role in predicting driver postural 
changes. Although advanced methodologies such as deep learning models are able to automatically 
extract high-level features from the raw input images, each problem is domain specific and the model 
generalisation can be improved by transforming raw data into features that better represent the 
underlying problem [12]. In our preliminary study [13], a few pressure parameters such as the pressure 
ratios between regional contact areas were investigated and the results showed that the movement 
of trunk and feet could possibly be described by analysing the pressure parameter changes. Therefore, 
in order to develop a more robust pressure sensor based postural monitoring system, pressure 
parameters that are more relevant to characterise body movement need to be identified. 
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The aim of the current study was to extract features from relevant pressure parameters to predict 
drivers’ postural change using a machine learning classifier. The classifier trained on these features is 
expected to be better than the one trained on raw pressure data in terms of generalisation capability. 
First, we systematically constructed a set of parameters from the original pressure distribution data. 
Secondly, the relevance of these parameters was evaluated using a Random Forest model. Finally, 
posture classification performance based on the selected features was evaluated. 

II. METHODS 

Experiment 
Twenty-three volunteers (11 females and 12 males) with at least three years of driving experience 

participated in the experiment. They varied in age from 22 to 65 years (M=40, SD=11.5), in height from 
153 to 195 cm (mean=171, SD=13) and in Body Mass Index (BMI) from 18.2 to 43.4 kg/m2 (mean=27.8, 
SD=6.7). Participants provided written informed consent prior to the experiment. Université Gustave 
Eiffel (formerly IFSTTAR, French Institute of Science and Technology for Transport, Development and 
Networks) Ethics Committee approved the experimental protocol. 

To ensure good coverage of in-vehicle driver postures, 42 driving and non-driving activities defined 
from a related study [14] were adopted. They consisted of primary driving operations such as standard 
driving, braking, switching gear, etc., secondary driving activities such as controlling the navigation 
system, picking up something in the car, etc., as well as possible new actions that may occur in an 
autonomous vehicle such as relaxing with both feet on the floor, holding a book with both hands, etc. 
For each task, the standard driving posture (with two hands on the steering wheel, trunk in normal 
position, left foot on floor and right foot on acceleration pedal) served as both the starting and end 
postures. 

During the experiment, participants were instructed to perform these tasks in a random order on 
a mock-up simulating the interior of an existing vehicle (Fig. 1). Pressures on the seat pan and backrest 
contact surfaces were measured by two Xsensor pressure mats (Model: PX 100: 48.48.02) with a 
sampling frequency of 25 Hz. Body positions during a motion were recorded by a marker-based optical 
motion capture system VICON with a frequency of 50 Hz. In addition, movements were also recorded 
by a Kinect sensor for further visual cross-reference. All the measurement systems were synchronised 
by using a common electronic trigger.  

 

 
Fig. 1. Experimental rig 

Definition of In-vehicle Posture Classes 
Driver motions recorded by the VICON system were reconstructed using RPx [15], a custom human 

model based motion analysis and simulation tool. For motion reconstruction, the body was simplified 
as a skeleton model with 28 articulated joints from head to feet (Fig. 2), and a posture was represented 
by an array of joint angles or joint positions. As pressure distribution on the seat is not sensitive to the 
movement of the head and arms, we decided to differentiate driver postures mainly by trunk and feet 
positions. Global trunk position was characterised by three angles (axial rotation angle, forward 
inclination angle and lateral tilt angle, see Fig. 2) relative to the normal trunk position in the standard 
driving posture.  
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Fig. 2. Driver skeleton model and trunk coordinate system 

 
To define different posture classes for labelling, we first extracted distinctive trunk positions from 

3D reconstructed motions. Empirically two ellipsoid envelopes were defined in the trunk angle space 
(axial rotation, forward inclination and lateral tilt) with half the length of the principal axes being (5°, 
3°, 2°) and (30°, 25°, 20°), respectively. The smaller envelope defined the standard driving postures. 
The intermediate transitional trunk positions between the two envelopes were excluded to avoid label 
ambiguity. For the trunk positions outside the larger envelope, a cluster analysis using mean shift [16] 
was performed to group them into six classes. In addition, four feet position classes were also 
identified. In total, nine posture classes were defined considering the trunk and feet positions.  

Pressure Distribution Data Processing 
According to the effective contact area between drivers and seat, the original pressure sensing 

area was tailored to 42 by 44 sensor elements for both seat pan and backrest mats. Raw data was 
smoothed by an averaging window of 3 by 3. To reduce the pressure variation due to body weight, 
pressure value was normalised by the peak on each mat. Thanks to the use of the trigger system, the 
correspondence between the posture class labels and pressure data was established. 

Identification of Relevant Pressure Parameters  
The pressure parameters relevant for describing postural change were extracted using a four-step 

process. First, we calculated the pressure standard deviation of each sensor across the standard 
driving postures performed by all the participants (see Appendix: Fig A1). The higher standard 
deviation is, the more sensitive to the inter-individual change the corresponding sensor is. Secondly, 
to gain knowledge about how the pressure distribution changes due to body movement, the pressure 
standard deviations of each sensor were averaged across all participants performing the same task 
(see Appendix: Fig A2 for some examples). The higher the standard deviation is, the more sensitive to 
body movement the corresponding cell is. Thirdly, by inspecting the pressure variation due to inter-
individual and postural changes, we segmented the backrest and seat pan pressure mats into 12 (B1-
B12) and 8 (S1-S8) sub areas as shown in Fig. 3. Finally, based on the segmentation of the pressure 
mats, 24 pressure parameters (Appendix: TABLE AI) were constructed by analysing pressure pattern 
changes. These parameters fell into three categories: Contact Area proportion (CA, the proportion of 
sensor elements on the pressure mat activated by body contact), Centre of Pressure (COP, 2D position 
of application of the resultant force in a sensing area) and Pressure Ratio (PR, the ratio between the 
sums of pressure from different sensing areas.  

To illustrate the principle behind the parameter construction process, two examples are shown in 
Fig. 4. The first one (Fig. 4a) corresponds to the reference posture when the right foot was on the 
acceleration pedal, while the second (Fig. 4b) corresponds to the posture when the right foot was on 
braking pedal. Due to the right foot movement, the pressure distribution patterns were very different 
from the reference, especially in the right part of the seat pan. Thus, we intuitively defined a set of 
parameters to characterise the pressure pattern change due to postural change. In this case, the COP 
position of the right front part of seat pan (S6+S8) in medial-lateral direction (𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆_𝑀𝑀𝑀𝑀), the 
pressure ratio between the right front part (S6+S8) and the right part of seat pan (𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆), etc. 
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Similarly, we inspected the pressure pattern changes due to left foot, trunk movement to define 
relevant parameters (Appendix: TABLE AI). 

  
(a) Backrest (b) Seat pan 

Fig. 3. Pressure map segmentation. Twelve sensing areas were defined for the backrest mat (a) and 
eight for the seat pan mat (b). The positions of all boundaries are set empirically. For the 
convenience of constructing parameters, all sub areas were named using the following convention: 
[Backrest/Seat pan]_[Up/Middle/Down part of backrest or Posterior/Anterior part of seat 
pan]_[Left/Right side of backrest or seat pan]_[Exterior/Interior part of backrest or seat pan in 
medial-lateral direction]. They were also numbered. 

 

  
(a) Right foot on acceleration pedal (b) Right foot on brake pedal 

Fig. 4. Pressure pattern change on seat pan when driver applied braking. 
 
In addition to the 24 parameters defined by inspecting the change of pressure distribution due to 

postural change, the sum of the pressure from each of the 20 sub areas was also incorporated. Based 
on these 44 parameters, two feature vectors were generated. The original feature vector 𝐹𝐹1(𝑡𝑡) simply 
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took the current parameter values at frame 𝑡𝑡 of one motion trial. The relative feature vector 𝐹𝐹2(𝑡𝑡) 
consisted of the parameter changes at the current frame 𝑡𝑡  relative to their initial value at the 
beginning of each trial, where drivers had adopted the standard driving posture. 

 

Parameter Selection 
The importance of the 44 pressure parameters were evaluated by training a Random Forest (RF) 

model [17], which is an ensemble of decision trees using the bagging (bootstrap aggregating) 
technique [18]. During the training process, the model randomly selects a subset of parameters and 
draws 𝑁𝑁 out of 𝑁𝑁 observations in the data set with replacements for growing each decision tree. The 
left out observations, approximately one third, are called Out-Of-Bag (OOB) observations. These OOB 
observations were used to evaluate the performance of the RF model. In addition, by randomly 
permuting OOB observations across one parameter at a time, the increase in the OOB classification 
error due to this permutation can be estimated. The larger the OOB error is, the more powerful the 
parameter is for postural classification, thus the more important it is. The importance of a parameter 
𝑝𝑝 is quantified by Eq. 1. 

𝐼𝐼𝐼𝐼𝑝𝑝𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝 = �̅�𝑑𝑝𝑝
𝜎𝜎𝑝𝑝�  Eq. 1 

Where �̅�𝑑𝑝𝑝 and 𝜎𝜎𝑝𝑝 are the mean and standard deviation of increased OOB error (𝑑𝑑𝑝𝑝) for all the 
decision trees when permuting the parameter 𝑝𝑝. 

The relative feature vector 𝐹𝐹2(𝑡𝑡) was used to train the RF classifier for evaluating the importance 
of each parameter. Based upon the results of the feature importance analysis, we evaluated the 
classifiers trained with a different combination of parameters, starting from the first two most 
important until all parameters were included by adding a less important one each time.  

 

Validation 
Two different sets of RF classifiers were trained for comparison purposes. The first one (RF1) was 

trained to classify all the nine posture classes using all the parameters from the original feature vector 
𝐹𝐹1(𝑡𝑡), while the second one (RF2) was trained to classify all the nine posture classes using the selected 
important parameters from the relative feature vector 𝐹𝐹2(𝑡𝑡) . To test the generalisation of the 
classifiers, a Leave-One-Out (LOO) cross-validation for each participant was performed. For each 
subject, the data of the other 22 participants was used as training data. For evaluating the classifier’s 
performance, we used 𝐹𝐹1 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 to quantify the classification accuracy. 𝐹𝐹1 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is a harmonic mean 
of Precision (the number of true positive predictions divided by the total number of true positives and 
false positives) and Recall (the number of true positive predictions divided by the total number of true 
positives and false positives) of each class. Finally, the best classifier was used to continuously predict 
the posture changes in a motion. 

 

III. RESULTS 

Driver Posture Classes 
Six distinctive trunk positions were determined based on the extent to which the trunk deviated 

from the initial position as shown in Fig. 5a. Four feet positions were extracted from trials where 
drivers pressed the acceleration pedal, pressed the brake pedal, switched gear and relaxed both feet 
on the floor (Fig. 5b). Combining the distinctive trunk positions and feet positions gave rise to nine 
driver posture classes (P0-P8, Fig. 5c) with 5,262 data samples in total. As the postures in P0 were very 
similar to the initial posture at the beginning of each trial, they were collectively called the standard 
driving posture.  
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Fig. 5. Typical posture definition scheme. The positive direction of each dimension in (a) denotes right 
rotation, forward inclination and lateral right tilt.  

Parameter Selection 
The 44 parameters were ranked in descending order according to their importance (Fig. 6). The 

mean value was around 2.0. The contact area proportion of backrest (𝐶𝐶𝑆𝑆_𝐵𝐵 ) had the highest 
importance (17.1), followed by the pressure ratio between the sub area 𝐵𝐵5 and the whole backrest 
(𝐶𝐶𝑆𝑆_𝐵𝐵𝑀𝑀𝑆𝑆𝐵𝐵_𝐵𝐵) and the pressure ratio between the combined area 𝐵𝐵2 + 𝐵𝐵6 + 𝐵𝐵10 and the whole 
backrest ( 𝐶𝐶𝑆𝑆_𝐵𝐵𝑆𝑆𝐼𝐼_𝐵𝐵 ), with a parameter importance of 7.6 and 6.8, respectively. Among the 
parameters related to the seat pan, the pressure ratio between the sub area 𝑆𝑆6 and the whole seat 
pan (𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼_𝑆𝑆) and the COP of the combined sensing area 𝑆𝑆2 + 𝑆𝑆4  in medial-lateral direction 
(𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑀𝑀_𝑀𝑀𝑀𝑀) are in the leading positions, with a parameter importance of 3.1 and 2.1, respectively. 
The lowest value (0.6) was found for the pressure ratio between the sub area 𝑆𝑆2 and the whole seat 
pan (𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝑀𝑀𝐵𝐵_𝑆𝑆). 

 

 
Fig. 6. Parameter importance estimated by RF model 

 
The performance of different RF2 classifiers was shown in Fig. 7. The OOB error decreased rapidly 

from 38% (when only the first two most important parameters were used to train the model) to 6% 
(when the first seven most important parameters were used). When more than 15 first parameters 
were used, the OOB error of the models remained stable around 4.5%.  
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Fig. 7. OOB error vs. number of parameters selected by their importance 

Leave-One-Out (LOO) Cross-validation 
The first 15 important parameters were used as predictors for training RF2 (using relative feature 

vector F2). The LOO cross-validation results for these two classifiers are given in TABLE I. Although RF1 
was trained with all the features from the original feature vector F1, the 𝐹𝐹1 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 of each class was 
lower than using RF2 which was trained with only the first 15 features from the relative feature vector 
F2. By a detailed examination of classification errors, we found that P0 and three feet positions (P6-
P8) could hardly be distinguishable by RF1. Without considering the feet positions, an accuracy of 
97.7% was found for class P0. This classifier is named RF1-6C, also shown in TABLE I. In case the initial 
posture was known, an average 𝐹𝐹1 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 of 77.4% (SD=19.3%) was achieved by RF2. Using RF2, all 
classes were recognised with an accuracy higher than 74% except for P6 (60.0%, driver pressed brake 
pedal) and P8 (34.7%, driver relaxed both feet on floor).  

TABLE I 

LOO CROSS-VALIDATION RESULTS – F1 SCORE  (N=5262) 
Class P0 P1 P2 P3 P4 P5 P6 P7 P8 Avg SD 
RF1 70.8% 88.1% 32.4% 55.1% 71.5% 76.4% 10.9% 53.6% 11.3% 52.2% 28.2% 
RF1-
6C 

97.7% 88.2% 37.5% 55.4% 75.7% 71.2% - - - 71.0% 21.9% 

RF2 78.5% 95.2% 74.2% 84.5% 85.9% 92.3% 60.0% 91.4% 34.7% 77.4% 19.3% 

IV. DISCUSSION 

The main objective of the present work was to extract features from pressure parameters that are 
more relevant to characterise the postural change of drivers while less sensitive to inter-individual 
differences. Four out of the first five important parameters were from backrest, suggesting the 
importance of backrest pressure mat for postural monitoring. This is in agreement with the fact that 
the trunk postural change had a higher effect on pressure distribution especially on the backrest. For 
example, the trunk forward inclination was accompanied by contact area reduction between the 
backrest and back. Furthermore, feet movement also result in pressure distribution changes on the 
backrest, as shown in Fig A2 (Appendix). Another point that should be noted here is that 12 of the 
intuitively defined parameters were found within the first 15 important parameters, suggesting the 
effectiveness of our intuitive parameter construction process. Trained on the first 15 important 
parameters, the model could achieve an accuracy of 95.5% for classifying the OOB observations, while 
models trained on more parameters did not improve their performance.  

Using the relative features from the carefully selected 15 parameters, the classifier RF2 performed 
much better than the classifier RF1 trained with all the 44 original features. This was because the 
relative features removed the impact of different driver anthropometry and seating preferences on 
the pressure distribution pattern. However, for practical application, a reference standard driving 
posture was required to construct the relative feature vector 𝐹𝐹2 before using the classifier RF2. To this 
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end, the normal trunk position could be estimated by the classifier RF1-6C, which provided extremely 
good recognition of posture P0 (97.7%). The normal feet positions (right foot on acceleration pedal 
and left foot on floor) could be predicted by analysing the information from integrated pedal sensors. 

It should be noted that, relative low accuracy was determined by the classifier RF2 for the postures 
when braking (P6) and relaxing the feet on the floor (P8). This was due to the individual behavioural 
differences when performing these tasks. For example, when applying the brakes, some of the drivers 
just slightly rotated the right calf to reach the brake pedal, while some drivers would first shift the 
right foot to the left before the pressing action. For relaxing the feet on the floor, the difference 
between the foot positions of different drivers were also observed. As a result, if the test driver did 
not perform the tasks in a similar way that was present in the training data, the results would suffer. 
One solution could be the use of additional pressure sensors implemented on the floor. 

The segmentation of the original pressure mat played a key role in identifying relevant pressure 
parameters. The main purpose of segmentation was to provide access to interpretable pressure 
parameters that were informative for predicting driver postural changes. In this work, the two 
pressure mats were segmented into 20 sub areas. An advantage of segmentation was that the original 
pressure mats were simplified as a combination of 8 or 12 isolated small pressure sensors. Given the 
expensive price of the pressure sensor, it is tempting to think that a cost-effective solution could be 
achieved by reducing the number of pressure cells while maintaining the effectiveness of the 
parameters. This is an interesting topic and will be one of the future research directions. 

Another direction of future work is to expand the study to a larger dataset with more postures and 
more drivers in order to further improve the classifier. In addition, we will perform continuous posture 
recognition using the classifier, as we did with the deep learning method in [11], to predict driver 
posture changes in complete motions. 

V. CONCLUSIONS  

Pressure parameters that are more sensitive to driver postural variation while less affected by 
inter-individual differences were constructed and selected by a machine-learning algorithm. The 
prediction model trained with the relative features of 15 important pressure parameters could achieve 
an average classification accuracy of 77.4% across 9 in-vehicle posture classes and 23 different drivers. 
Accurate recognition of feet positions using seat pressure mapping alone is still challenging. Adding 
additional contact sensors on the floor and pedals could be a solution. The method proposed by this 
study provides valuable insight regarding the selection of meaningful and appropriate pressure 
features for predicting driver’s postures.  
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VIII. APPENDIX 

 
Fig A1. Pressure standard deviation across the standard driving postures of all drivers. The pressure 
standard deviations were normalised by the corresponding peak of each mat. The inconsistency 
within the pressure standard deviation maps are mainly caused by the ergonomic design of the 
driver seat surface. On the seat pan, the pressure in medial-lateral direction is asymmetrically 
distributed. This is because of the different placements of the feet, i.e., right foot on the throttle 
while left foot on the floor. 

 
 

  
(a) Trunk rotation (b) Trunk flexion 

  
(c) Braking (d) Switching gear 

 
(e) Crossing legs 

Fig A2. Pressure standard deviation across body part movement of all drivers (the backrest is on the 
left and seat pan on the right). The pressure standard deviations were normalised by the 
corresponding peak of each mat. The pressure changes concentrated on the upper part of the 
backrest when driver rotates the trunk (a). When driver inclined the trunk in anterior-posterior 
direction, the pressure changes were mainly located at the middle part of backrest (b). When driver 
moved the feet, the front part of the seat pan saw remarkable pressure changes, as shown by the 
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cases in (c), (d) and (e). Another information we could draw from these observations is that any 
body movement related to trunk or thigh will cause pressure changes on both backrest and seat 
pan. 

TABLE AI 

SPECIFICATION OF PRESSURE PARAMETERS FOR EACH FRAME 𝒕𝒕 
Contact area proportion (CA_[sensing area]) 

ID Parameter  Expression  Description 
1 𝐶𝐶𝑆𝑆_𝐵𝐵(𝑡𝑡) ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)𝐵𝐵_𝑋𝑋(𝑡𝑡)

𝑁𝑁�  Where 𝐼𝐼(𝑖𝑖, 𝑗𝑗) = 1 if the sensor element at 
position (𝑖𝑖, 𝑗𝑗) is occupied, 0 otherwise. 𝑁𝑁 = 44 ×
42 

2 𝐶𝐶𝑆𝑆_𝑆𝑆(𝑡𝑡) ∑ 𝐼𝐼𝑆𝑆_𝑋𝑋(𝑡𝑡) (𝑖𝑖, 𝑗𝑗)
𝑁𝑁�  

Centre Of Pressure (COP_[sensing area]_[direction (Medial-Lateral/Up-Down/Anterior-Posterior)]) 
ID Parameter Sensing area Description 

3 𝐶𝐶𝐶𝐶𝐶𝐶_𝐵𝐵_𝑀𝑀𝑀𝑀(𝑡𝑡) 𝐵𝐵_𝑋𝑋 

The COP of a (combined) sensing area in one 
specific direction. The value is divided by the 
corresponding dimension of the (combined) 
sensing area for normalization.  

4 𝐶𝐶𝐶𝐶𝐶𝐶_𝐵𝐵_𝑈𝑈𝑈𝑈(𝑡𝑡) 𝐵𝐵_𝑋𝑋 
5 𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆_𝑆𝑆𝐶𝐶(𝑡𝑡) 𝑆𝑆_𝑋𝑋 
6 𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆_𝑀𝑀𝑀𝑀(𝑡𝑡) 𝑆𝑆_𝑋𝑋 
7 𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆_𝑆𝑆𝐶𝐶(𝑡𝑡) 𝑆𝑆_𝑋𝑋_𝑆𝑆_𝑋𝑋 
8 𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑀𝑀_𝑆𝑆𝐶𝐶(𝑡𝑡) 𝑆𝑆_𝑋𝑋_𝑀𝑀_𝑋𝑋 
9 𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑀𝑀_𝑀𝑀𝑀𝑀(𝑡𝑡) 𝑆𝑆_𝑆𝑆_𝑀𝑀_𝑋𝑋 

10 𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆_𝑀𝑀𝑀𝑀(𝑡𝑡) 𝑆𝑆_𝑆𝑆_𝑆𝑆_𝑋𝑋 
Pressure Ratio (PR_[Sensing area 1]_[sensing area 2]) 

ID Parameter Sensing area 1 Sensing area 2 Description 
11 𝐶𝐶𝑆𝑆_𝐵𝐵𝑆𝑆𝐵𝐵_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑋𝑋_𝑆𝑆_𝐵𝐵 𝐵𝐵_𝑋𝑋 

The ratio between the sums of 
pressure from two (combined) 
sensing areas. 

12 𝐶𝐶𝑆𝑆_𝐵𝐵𝑆𝑆𝐼𝐼_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑋𝑋_𝑆𝑆_𝐼𝐼 𝐵𝐵_𝑋𝑋 
13 𝐶𝐶𝑆𝑆_𝐵𝐵𝑀𝑀𝐵𝐵_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑋𝑋_𝑀𝑀_𝐵𝐵 𝐵𝐵_𝑋𝑋 
14 𝐶𝐶𝑆𝑆_𝐵𝐵𝑀𝑀𝐼𝐼_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑋𝑋_𝑀𝑀_𝐼𝐼 𝐵𝐵_𝑋𝑋 
15 𝐶𝐶𝑆𝑆_𝐵𝐵𝑈𝑈_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑈𝑈_𝑋𝑋 𝐵𝐵_𝑋𝑋 
16 𝐶𝐶𝑆𝑆_𝐵𝐵𝑀𝑀_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑀𝑀_𝑋𝑋 𝐵𝐵_𝑋𝑋 
17 𝐶𝐶𝑆𝑆_𝐵𝐵𝑈𝑈_𝐵𝐵(𝑡𝑡) 𝐵𝐵_𝑈𝑈_𝑋𝑋 𝐵𝐵_𝑋𝑋 
18 𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝑀𝑀_𝑆𝑆𝑀𝑀(𝑡𝑡) 𝑆𝑆_𝑆𝑆_𝑀𝑀_𝑋𝑋 𝑆𝑆_𝑋𝑋_𝑀𝑀_𝑋𝑋 
19 𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑆𝑆_𝑆𝑆_𝑆𝑆_𝑋𝑋 𝑆𝑆_𝑋𝑋_𝑆𝑆_𝑋𝑋 
20 𝐶𝐶𝑆𝑆_𝑆𝑆𝑀𝑀𝐵𝐵_𝑆𝑆𝑀𝑀(𝑡𝑡) 𝑆𝑆_𝑋𝑋_𝑀𝑀_𝐵𝐵 𝑆𝑆_𝑋𝑋_𝑀𝑀_𝑋𝑋 
21 𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝐵𝐵_𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑆𝑆_𝑋𝑋_𝑆𝑆_𝐵𝐵 𝑆𝑆_𝑋𝑋_𝑆𝑆_𝑋𝑋 
22 𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆_𝑆𝑆(𝑡𝑡) 𝑆𝑆_𝑋𝑋_𝑆𝑆_𝑋𝑋 𝑆𝑆_𝑋𝑋 
23 𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆_𝑆𝑆(𝑡𝑡) 𝑆𝑆_𝑆𝑆_𝑋𝑋 𝑆𝑆_𝑋𝑋 
24 𝐶𝐶𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑆𝑆_𝑆𝑆_𝑆𝑆_𝑋𝑋 𝑆𝑆_𝑆𝑆_𝑋𝑋 

Notes. 𝑋𝑋 in the name of a sensing area stands for all possible options in the corresponding code 
position or thereafter, i.e., S_F_L_X represents the front left part of the seat pan including S_F_L_E 
and S_F_L_I, while B_X denotes the whole part of backrest. In the parameter name, the 𝑋𝑋 is 
omitted for brevity. 
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