LOWER LEG INJURIES
IN REAL-WORLD FRONTAL ACCIDENTS
Laurent PORTIER*, Xavier TROSSEILLE*, Jean-Yves Le COZ*, François LAVASTE**, Jean-Claude COLTAT***.
*- Department of Environmental Sciences, RENAULT S.A.
- Ecole Nationale Supérieure d'Arts et Métiers, 75013 Paris, *- Hôpital Intercommunal de Poissy, 78300 Poissy.

Abstract

The magnitude and the type of lower leg injuries observed in real-world frontal accidents as well as the injury mechanisms in this body region have been examined. An investigation into the APR (Association Peugeot Renault) accident database has been carried out. From 2,022 front-seat occupants, restrained or not, involved in a frontal collision, 208 sustained either a strain, a laceration into joint, a dislocation or a fracture below the tibial plateaux. An in-depth analysis of the injury mechanisms has been performed using the X-rays of 42 occupants.

The most prominent injuries are metatarsal fractures (39 cases), malleolar fractures (39 cases) and ankle sprains (44 cases).

The brake pedal increases significantly the number of injuries on the right foot of the drivers. However no differences have been found between the right and the left legs as far as drivers' ankles are concerned. Passengers sustain more injuries on their left ankle, and seem to have more injuries on their right foot, directly exposed to wheel well intrusions.

The most significant parameters which influence the lower leg injuries appear to be the delta-V correlated with the footwell intrusion and the configuration of the impact especially the overlap. The seat-belt use and the occupant's age do not affect significantly lower leg injuries.

Two main mechanisms are identified. In the first one, forces acting under the metatarsal condyles coupled with the inertial effect of a dorsiflexing foot produce metatarsal fractures. Malleolar fractures and ankle sprains are attributed to eversion/inversion motions caused by forces acting under the ball of the foot.

This study represents a basis for tests involving cadavers and the Hybrid III dummy.

1. INTRODUCTION.

Although lower leg injuries are not life-threatening, they result in long-term disability and heavy cost to society (Pletschen [1990] ${ }^{10}$)*, which includes medical costs, productivity losses and administrative expenses.

[^0]Lower limbs are one of the most common sites of injuries in car accidents together with head and thorax, especially in frontal impacts. Taking into account all AIS $2+$ injuries occurring in frontal impacts and recorded in the APR accident database, lower extremities were found to be the second body region after the head for restrained drivers, and the fourth after the thorax, head and upper extremities for the restrained right-front passengers.

Most of the previous studies were focused on the upper leg since the mechanism of injury originating from the impact of the knee on the dashboard is quite simple and very frequent. For this reason, some comparisons will be made between the upper leg and the lower leg, throughout this paper.

The objective of this study is to evaluate the magnitude and the type of lower leg injuries as well as the main injury mechanisms, on which our attention must be focused, in order to face the legislation requirements, and improve the Hybrid III biofidelity. Some authors such as Ward [1991] ${ }^{13}$ have pointed out the deficiencies of the ECE regulations controlling the footwell intrusion. The capacity for the instrumented lower leg of the Hybrid III dummy to measure lower leg tolerances has not been well established and further research is necessary.

2. ANATOMY OF THE LOWER EXTREMITIES.

The talus hinges with the tibia and the fibula between the medial and the lateral malleolus, (figure 1). This makes up the ankle joint. The calcaneum underneath bears the talus. Metatarsals and phalanges are connected to the talus and the calcaneum through a juxtaposition of several bones: the navicular, the cuboid and the three cuneiforms. The ankle joint is respectively strengthened laterally and medially by the calcaneal fibular and the deltoid ligaments. Those ligaments are the site of so-called "ankle sprains".

Figure 1: anatomy of the lower extremities, Huelke [1986] ${ }^{3}$.

3. BIBLIOGRAPHY.

Thorough investigations of lower leg injuries using accident databases, with a view to determining the injury mechanisms are quite recent. Some authors analyse the areas of contact between the occupant and the vehicle. Huelke [1991] ${ }^{4}$ distinguishes two main areas: the dashboard which causes fractures to the knee, femur and hip joint, and the footwell including the pedals which cause foot and ankle fractures. For the drivers, AIS $2+$ injuries of the tibia/fibula are attributed to the dashboards (53% of the cases) and to the footwell/pedals (37% of the cases).

Pattimore [1991] ${ }^{9}$ and Ward [1991] ${ }^{13}$ used rough areas of contact coded in their computerized file, in conjunction with each lesion. According to Pattimore [1991] ${ }^{9}$, the footwell is the main source of injuries if drivers and passengers are considered together. However, the pedals intervene in 49% of the foot and ankle fractures of drivers. Ward [1991] ${ }^{13}$ noticed that the footwell created more AIS $2+$ lesions $(39,5 \%)$ than the dashboard $(24,6 \%)$. Indeed, the dashboard generates more AIS $1+$ lesions $(40,7 \%)$ than the footwell $(8,2 \%)$. Those analyses make it difficult to study the mechanisms thoroughly.

Other authors have analysed more precisely a limited sample of cases, sometimes using X-rays. Morgan [1991] ${ }^{6}$ has attributed a mechanism for each of his 480 occupants involved in frontal collisions. Six different mechanisms were identified. The main mechanisms involve contact with the foot controls for the drivers and direct contact with the footwell for the passengers. Dorsiflexion together with an axial load along the tibia is assumed to be the right phenomena.

Lestina [1992] 5 from 23 cases including X-rays only studied the ankle, the navicular and the calcaneal fractures. Inversion and eversion caused ankle fractures in 15 cases out of 23 , mainly malleolar fractures.

Otte [1992] ${ }^{8}$ studies ankle and foot fractures from basic movements such as dorsiflexion, plantar flexion, compression, pronation and supination. By combining them, he defines complex mechanisms. The origins of lesions are:

- direct impacts, the body's inertial effect and compression between intruding structures,
- rotations, some of them being due to slipping off the pedals.

States [1971] ${ }^{11}$ describes a specific mechanism of fracture which consists of an entrapment of the lower leg between the dashboard and the floor. It could occur together with torque or flexion and create tibial diaphysis fractures, (States [1986] ${ }^{12}$). Slipping off the pedals may explain ankle and foot fractures.

Backaitis [1987] ${ }^{1}$ also reports 2 cases of ankle fractures which are attributed to the pedals.

Nahum [1968] ${ }^{7}$ defines 2 kinds of mechanism: the direct impact as it happened in the case of tibial diaphysis fracture presented in his paper, and the forced motions such as those causing a malleolar fractures.

Zeidler [1981] ${ }^{14}$ focuses on the foot and ankle fractures of drivers involved in glance-off frontal car-to-car impacts. However this configuration, although rare (12/82 cases involved in car-to-car impacts on the driver near side with up to $2 / 3$ overlap), highlights the damaging effect of direct impact on the foot and ankle.

In many papers, body regions are not precisely defined. Some of them only deal with ankle and foot injuries. So, it is often difficult to determine the main body regions and mechanisms on which our attention must be focused. Gloyns [1979] ${ }^{2}$ does describe precisely the injuries, but in slightly more violent accidents than the average.

In some publications, the influence of a parameter such as the belt, delta- V is evaluated without taking into account the number of occupants involved in each class defined by the parameter.

For those reasons, and also in order to help the synthesis and the criticism of the many figures found in the literature, an in-depth study has been performed using the APR accident database.

4. ACCIDENT ANALYSIS FROM THE APR FILE.
 4.1. Introduction.

This investigation concerns 208 front-seat occupants (see Annexe) out of 2,022 who sustain at least either a sprain, a laceration into joint, a dislocation or a fracture to the lower leg. Sometimes, for comparison purposes, 396 occupants with similar injuries to the lower extremities and the pelvis have been considered. They include the 208 previous ones. The 2,022 occupants involved were selected as follows:

- single frontal collisions, with delta-V and acceleration known
- cars with first registration after 1972.
- non-ejected front-seat occupants tightly restrained or unrestrained, with age known.
The injury codes of the computerized files have been revised for the 396 occupants from the description recorded in the medical files.

The lower extremities were divided into 9 body areas:
The upper leg $\left[\begin{array}{l}\text { 1- Hip joint, acetabulum, femoral head. } \\ \text { 2- Pubic rami. } \\ \text { 3- Other parts of the pelvis. } \\ \text { 4- Femoral diaphysis. } \\ \text { 5- Knee including femoral condyles and tibial plateaux. }\end{array}\right.$
The lower leg $\left[\begin{array}{l}\text { 6- Tibial diaphysis. } \\ \text { 7- Ankle: malleolus, talus, calcaneum, navicular and the } \\ \text { cuneiforms. } \\ \text { 8- Metatarsus. } \\ \text { 9- Toes. }\end{array}\right.$

4.2. Relative proportion of the lesions.

Injured occupants (restrained or not) at the level of the foot and the ankle (162/396 $=40,9 \%$), with severities as defined by the criteria specified earlier, are as numerous as those suffering knee injuries ($160 / 396=40,4 \%$), (figure 2). Hip joint, femoral diaphysis and even metatarsal fractures are also quite common, ($77 / 396=19,4 \%, 74 / 396=$ $18,6 \%, 42 / 396=10,6 \%$ respectively).

Figure 2: risk of injury (sprains, laceration into joint, dislocations, fractures) in the various leg areas, among restrained and unrestrained front occupants having sustained a frontal impact.

The main lesions occurring in each of the 9 body areas defined earlier are described in table 1. The number opposite each type of injury represents the number of occupants who have sustained that injury.

Region	Injury	Number of occupants	Frequency (\% out of 396)
Hip	Acetabulum fractures	$\mathbf{4 9}$	12,4
Pubic rami	Fractures of pubic rami	23	5,8
Femoral diaphysis	Fractures of the diaphysis	$\mathbf{7 4}$	18,7
Knee	Kneecap fractures	$\mathbf{7 7}$	19,4
Tibial diaphysis	Fractures of the diaphysis	21	5,3
Ankle	Fibula fractures	$\mathbf{4 8}$	12,1
	Tibia fractures (distal part)	$\mathbf{3 6}$	9,1
	Talar fractures	21	5,3
	Fractures of the calcaneum	12	3,0
	Ankle sprains	$\mathbf{4 4}$	11,1
Metatarsus	Metatarsal fractures	$\mathbf{3 9}$	9,8
Toes	Toe dislocations	7	1,8
	Toe fractures	6	1,5

Table 1: main injuries encountered in each body area for restrained and unrestrained front occupants having sustained a frontal impact.

Many minor wounds (contusions, abrasions, etc...) are also reported especially to the knee, but a very few to the ankle and the foot.

Of those occupants having distal tibial fractures, 39 sustained malleolar fractures and 8 others have "ankle fractures", which in principle concern malleoli too. Their frequency between the right and the left ankle remains the same, whether it concerns drivers or passengers. The medial malleolus seems to be slightly more fractured but the difference is not significant.

Ankle sprains are frequent too (44 occupants). They are incorrectly described in 29 out of 44 cases. Out of the other 15 well documented cases, 12 have injuries to their lateral ligaments. Sprains seem to occur more frequently on the left ankle of the passengers, near the transmission tunnel, (right ankle: 3 passengers, left ankle: 10 passengers, 1 passenger whose the side was unknown; $\chi^{2}=7.04$ but some numbers are less than 5).

82 metatarsal fractures were recorded among the 39 occupants concerned. They occur 1 time on the $1^{\text {st }}$ metatarsal,

23 times on the $2^{\text {nd }}$,
20 times on the 3 rd,
21 times on the $4^{\text {th }}$,
12 times on the 5 th,
(5 are not described any further), so mainly the $2 \underline{\text { nd }}$, the 3 rd and the $4 \underline{\text { th }}$ metatarsals. The greater mobility of the $1^{\text {st }}$ and the $5^{\text {th }}$ metatarsals, and the higher breaking strength of the $1^{\text {st }}$ compared with the others, make them intervene less frequently.

From the 396 occupants with lower extremity injuries, 380 were precisely described in terms of location and side of the injury, (right or left leg). Those 380 occupants represent 452 injured lower extremities among which 339 (75\%) sustain isolated lesions in one of the nine body regions defined previously, mainly on the knee (104/452 = $23,0 \%)$ and on the ankle $(105 / 452=23,2 \%)$. An examination of the combinations of injuries between the regions of the upper leg confirms the mechanism originated from the impact of the knee on the dashboard. But combinations between the knee and the ankle can't support the entrapment described by States $[1971,1986]^{11,12}$, insofar as there is a high probability of lesions occurring at both ankle and knee.

4.3. Influence of parameters concerning the occupant.
 - Comparison between the drivers and the passengers.

The risk of lower leg injury is the same for all categories of occupants, except for unrestrained passengers, (figure 3). No reason has been found to explain this exception. On the contrary, the risk of sustaining upper leg injuries is higher for drivers than for passengers. Indeed, the footwell intrusion is higher on the driver side. Also, drivers may impact hard parts of the vehicle structure that are situated close to the knees such as the steering column.

Figure 3: Comparison of the lesions to several body regions, between drivers and passengers involved in frontal collisions, with respect to their seat-belt use.

Moreover, as far as right-front passengers are concerned, the risk to the ankles is significantly greater than that posed to the knees. The risk to the knees, for unrestrained drivers is greater than the risk to the ankles. For restrained drivers, the difference is not significant, ($\chi^{2}=1.02<3.84$).

Seat-belt use does not reduce the number of lower leg injuries. The possible beneficial role of the seat belt for unrestrained passengers is not significant, $\left(\chi^{2}=2.91\right.$ as far as lower leg injuries are concerned, and $\chi^{2}=1.67<3.84$ as far as ankle injuries are concerned).

- Comparison between the left and the right leg.

By distinguishing between injuries concerning the "foot" and those concerning the "ankle", the tibia and the fibula, the effect of the pedals can be highlighted (table 2).

208 occupants injured in the lower legs.	1421 drivers		601 passengers	
	Footwell intrusion		Footwell intrusion	
	$\begin{gathered} <150 \mathrm{~mm} \\ 1102 \text { drivers } \\ \hline \end{gathered}$	$\begin{aligned} & >150 \mathrm{~mm} \\ & 319 \text { drivers } \end{aligned}$	$\begin{aligned} & <150 \mathrm{~mm} \\ & 464 \text { pass. } \end{aligned}$	$\begin{aligned} & >150 \mathrm{~mm} \\ & 137 \text { pass. } \end{aligned}$
129 occupants with fractures of the tibia or malleoli + knee sprains and dislocations. (93 with malleolus fractures and ankle sprains, 42 witb tibial and fibula fractures).	$\begin{gathered} 15 \mathrm{R}, \quad 16 \mathrm{~L} \\ 0 \mathrm{~B}, \quad 0 ? \\ \chi^{2}=0,03 \end{gathered}$	$\begin{array}{cc} 26 \mathrm{R}, & 19 \mathrm{~L} \\ 7 \mathrm{~B}, & 1 ? \\ \chi^{2}= & 0,92 \end{array}$	$\begin{gathered} 6 \mathrm{R}, \quad 14 \mathrm{~L} \\ 0 \mathrm{~B}, \quad 3 ? \\ \chi^{2}=3,27 \\ \hline \end{gathered}$	$\begin{array}{cc} \hline 6 \mathrm{R}, & 12 \mathrm{~L} \\ 4 \mathrm{~B}, & 0 ? \\ \chi^{2}= & 1.53 \end{array}$
	$\begin{gathered} 41 \mathrm{R}, \quad 35 \mathrm{~L} \\ 7 \mathrm{~B}, \quad 1 ? \\ \chi^{2}=0,41 \end{gathered}$		$\begin{gathered} 12 \mathrm{R}, \quad 26 \mathrm{~L} \\ 4 \mathrm{~B}, \quad 3 ? \\ \chi^{2}=4.43 \end{gathered}$	
96 occupants with fractures of the metatarsals, cuneiform bones, navicular, talus, calcaneum + tibial pilon.	$\begin{gathered} 22 \mathrm{R}, \quad 4 \mathrm{~L} \\ 0 \mathrm{~B}, \quad 1 ? \\ \chi^{2}=12,61 \\ \hline \end{gathered}$	$\begin{array}{cc} \hline 21 \mathrm{R}, & 18 \mathrm{~L} \\ 3 \mathrm{~B}, & 1 ? \\ \chi^{2}= & 0,22 \end{array}$	$\begin{array}{cc} \hline 6 \mathrm{R}, & 4 \mathrm{~L} \\ 0 \mathrm{~B}, & 0 ? \\ \chi^{2}= & 0,40 \\ \hline \end{array}$	$\begin{array}{cc} 10 \mathrm{R}, & 4 \mathrm{~L} \\ 2 \mathrm{~B}, & 0 ? \\ \chi^{2}= & 2,14 \end{array}$
	$\begin{gathered} 43 \mathrm{R}, \quad 22 \mathrm{~L} \\ 3 \mathrm{~B}, \quad 2 ? \\ \chi^{2}=6,37 \end{gathered}$		$\begin{array}{cc} 16 \mathrm{R}, & 8 \mathrm{~L} \\ 2 \mathrm{~B}, & 0 ? \\ \chi^{2}= & 2,34 \\ \hline \end{array}$	

Table 2: Difference between the right and left leg for restrained and unrestrained front occupants having sustained a frontal impact, depending on footwell intrusion and on whether the area affected is the "foot", or the "ankle", tibia or fibula ($\mathrm{R}=$ Right, $\mathrm{L}=\mathrm{Left}, \mathrm{B}=$ Both sides, ? unknown side, χ^{2} significant if $>3,84$-threshold for 5%-).

In the case of slight intrusion ($<150 \mathrm{~mm}$), the driver's right foot is injured significantly more often than the left foot. In particular, for the driver, seven calcaneum fractures out of nine occurred on the right foot $\left(\chi^{2}=5.56\right.$ significant, but some numbers are less than 5, 2 fractures on the left).

The ankle and tibia of passengers are injured more often on the left-hand side than on the right. This difference in fact concerns the ankle. Out of 14 restrained and unrestrained passengers, 10 suffered a sprain of the left ankle, near the transmission tunnel. Fractures of the malleoli seem to be evenly distributed. On the other hand, the right foot of passengers would tend to be more frequently injured, but the numbers are too small to demonstrate this. Indeed, extensive deformation of the wheel well, beneath the right foot of passengers (or the left foot of drivers), is often observed.

The effect of the brake pedal is confirmed in the case of right-hand drive vehicles (table 3).

Gloyns [1979] (UK)	47 restrained drivers		134 unrestrained drivers		19 restrained drivers		58 unrestrained drivers	
	Right	Left	Right	Left	Rigbt	Left	Right	Left
Hip	2	$\mathbf{1}$	15	11	3	1	3	5
Femur	$\mathbf{6}$	$\mathbf{0}$	$\underline{\mathbf{2 2}}$	$\mathbf{7}$	2	3	3	2
Knee	3	0	8	4	0	0	0	0
Tibia/fibula	3	3	8	5	0	0	2	3
Ankle/foot	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{2 0}$	$\mathbf{3}$	3	0	1	1

Table 3: Comparison between the right and left side for the entire leg, for restrained and unrestrained front passengers sustaining at least one in jury of AIS $2+$ on any body area up to the head inclusive, involved in an 11 o'clock/l o'clock frontal impact, GLOYNS [1979] ${ }^{2}$ (UK).

In the APR database, 12 occupants have a combination of foot and ankle injuries. 6 have metatarsal fractures associated with sprains or fractures of malleoli. 3 have a fracture of the calcaneum associated with a malleolus fracture. 3 have fractures of the tarsus associated with a malleolus fracture. There are accordingly few injuries affecting both the metatarsals and the ankle, even though they represent the most frequent case of foot/ankle combinations. Moreover, they occur generally in the event of extensive footwell intrusion (a single case with intrusion less than 150 mm). This shows that most of the fractures are due to impacts located on the body area concerned.

- Influence of occupant's age.

The risk of lower leg injury increases slightly with the age of the occupants, all of them considered together. But this result becomes less obvious when each category of occupants is considered separately, (figure 4). Yet, no significant bias due to the velocity change Delta-V ($1,5 \mathrm{~km} / \mathrm{h}$ between young and old occupants) has been observed.

Figure 4: risk of lower leg injury with respect to the occupant's age, in frontal collisions.

So, based on the data, the occupant's age seems to have little influence on leg injury statistics.

4.4. Influence of the parameters concerning the collision.
 - The velocity change delta-V.

50% of all occupants (injured or not) were involved in frontal collisions with delta-V below $35 \mathrm{~km} / \mathrm{h}$. Whereas 50% of the occupants sustaining lower leg injuries are involved in frontal collision with delta-V below $47 \mathrm{~km} / \mathrm{h}$. This figure remains the same as far as the upper leg is concerned. So a high velocity change is necessary to produce lower leg injuries, (figure 5). Below $25 \mathrm{~km} / \mathrm{h}$, only $2,1 \%$ of the occupants sustain lower leg injuries.

Figure 5: risk of lower leg injury with respect to the velocity change delta- V , in frontal collisions.

- The footwell intrusion.

The risk of lower leg injury increases with the extent of the footwell intrusion, (figure 6). 50% of all occupants (injured or not) are involved in collisions with footwell intrusions below 40 mm . But when they are injured in the lower leg region, the $50^{\text {th }}$ percentile reaches 200 mm . As far as upper leg is concerned, the $50^{\text {th }}$ percentile for the footwell intrusion is 170 mm for unrestrained drivers and 330 mm for restrained drivers, because in that case, knee impacts occur less often.

Figure 6: risk of lower leg injury with respect to the footwell intrusion, in frontal collisions.

At the lower end of the range of intrusion size ($<50 \mathrm{~mm}$), 52 occupants have lower leg injuries. Yet, 7 cases of talus fratures, 9 with malleolus fractures and 8 with metatarsal fractures are encountered all the same. But the risk is low ($52 / 1276=4,1 \%$) among the many occupants involved in those minor accidents.

Unfortunately, among violent impacts with velocity change between 46 and $65 \mathrm{~km} / \mathrm{h}$, which represents the realistic and reasonable field of conditions for future experimental studies, no difference was observed between impacts with the footwell intrusion below 150 mm and those with an intrusion of between 150 and 350 mm , in terms of risk to lower legs, (figure 7).

Figure 7: risk of lower leg injury for all front occupants restrained or not, involved in a frontal collision on their near side with delta-V between 46 and $65 \mathrm{~km} / \mathrm{h}$, with respect to the footwell intrusion.

- The dashboard intrusion.

For a given footwell intrusion, the risk of lower leg injury does not increase significantly with respect to the dashboard intrusion, (figure 8). This does not support the observations of leg entrapments described by States [1987, 1986] 11,12 , although the small number of occupants made it difficult to study this parameter.

Figure 8: risk of lower leg injury for all front occupants restrained or not, involved in a frontal collision on their near side with delta-V between 26 and $65 \mathrm{~km} / \mathrm{h}$, and footwell intrusion between 150 and 350 mm , with respect to the dashboard intrusion.

- The impact configuration.
48.1 \% of the occupants were involved in frontal impacts which cause intrusions into the driver side compartment (up to $2 / 3$ overlap plus some non-symmetrical 100% overlap collisions), 27.9% in collisions on the passenger side, and $24,0 \%$ in non-offset collisions. One must notice the high proportion of collisions with high overlaps which induce effects similar to non-offset collisions: 52.2 \% sustains overlaps over $2 / 3$.

The risk of lower leg injury is twice as high when the impact is located on the occupant near side, (figure 9).

Figure 9: risk of lower leg injury with respect to the configuration of the frontal collision.

When the impact occurs on the occupant near side, the risk is particularly high when the overlap is around $1 / 2,(15,9 \%)$, (figure 10). $1 / 4$ or $1 / 3$ overlap impacts have generally a low mean acceleration level.

Figure 10: risk of lower leg injury for restrained and unrestrained front occupant with respect to the overlap of the frontal collision.

Non-offset collisions produce effects on lower legs, similar to those observed when the impact is located either on the occupant near side or on the opposite side, depending on the velocity change and the body areas concerned. The risk of ankle injury substantially increases when the impact is located on the occupant near side, (figure 11). A higher intrusion velocity is required in order to produce an ankle fracture than that required to fracture the knee. The foot is directly in contact with the footwell, and consequently submitted to its acceleration, whereas, the knee moves and comes into contact with the dashboard. Moreover, the crushable dashboard makes the knee less responsive to its acceleration.

Figure 11: comparison between the risk of ankle injury and the risk of knee injury of the drivers with respect to the configuration of the frontal collision.

4.5. Radiographic analysis.

Of the 208 occupants with lower leg injuries, 64 were treated in Poissy hospital, the most frequently one mentioned in the accident files, 15 for ankle sprains and 49 for fractures below the tibial plateaux. Nearly all the medical files (42/49) for these occupants have been retrieved. Accordingly, the proportion of the various fractures considered in this sample, is theoretically still representative of the real-world accident.

X -rays are therefore available for $\mathbf{4 2}$ occupants involved in a frontal impact of known characteristics (photos of the vehicle, delta-V, intrusion, etc.), since this research was performed on part of the occupants selected in the previous statistical study.

The differences observed between the right and left legs of drivers are again found in this sample (table 4). Of 31 drivers, 19 have injuries to their right lower leg and 11 have injuries to their left lower leg, ($\chi^{2}=4,13$ is significant). Contrary to the global sample (with the 208 occupants), most of this difference comes from the metatarsal fractures, (right foot: 10 drivers; left foot: 4 drivers).

	31 drivers			11 passengers		
	Right	Left	Both sides	Right	Left	Both sides
Lower leg	$\mathbf{1 9}$	$\mathbf{1 1}$	1	6	3	2
Foot in front of Chopart's line + tibial pilon	$\mathbf{1 4}$	$\mathbf{5}$	1	4	2	1
Metatarsals	$\mathbf{1 0}$	$\mathbf{4}$	0	3	2	0

Table 4: Comparison between the right and left legs, in the sample of 42 occupants fractured below the tibial plateaux, who have sustained a frontal impact restrained or unrestrained, and for which X-rays are available.

Each of the 42 occupants has been grouped according to his injury and the associated mechanism, (table 5).

Type of injury	Number of occupants	Possible mechanism
Fibula head fractures, often associated with tibial plateau fractures.	3	direct impact on the knee.
Tibial metaphysis fractures.	2	direct impact on the metaphysis.
Tibial diaphysis fractures.	4	direct impact on the tibia.
Tibial pilon and calcaneal fractures.	2	Forces along the tibia, acting under the heel.
Malleolus fractures, (one must keep in mind the 15 cases of ankle sprains discarded before).	6	Lateral motions: inversion and eversion motions due to forces acting under the ball of the foot.
Talar fractures	1	Dorsiflexion.
Metatarsal fractures (14 cases); toe, cuneiform, navicular and talus head fractures.	19	Forces acting under the metatarsal condyles, combined with the inertial effect of the foot in its dorsiflexing movement, and/or muscular contractions during a hard breaking.
Talo-navicular and talo-calcaneal dislocation, (2 without any fractures).	3	Unknown.
Complex fractures within several areas: ankle, foot.	2	No single mechanism.

Table 5: mechanisms for the 42 occupants fractured below the tibial plateaux, who have sustained a frontal impact restrained or unrestrained, and for which X-rays are available.

The main injury mechanisms for the 2 most frequent type of injury are as follows:

- Fractures of the metatarsals (14 cases), plus, fractures of toes, cuneiform bones, navicular and talar head (5 cases): 19 cases.

Forces on the metatarsal extremities acting at the same time as the effect of inertia of the foot in its dorsiflexion movement.
Most of the metatarsal fractures occur at the condyles ($9 / 15$ occupants) and at the basis ($6 / 5$ occupants), but a very few at the diaphysis ($2 / 15$ occupants having sustained 61 and $78 \mathrm{~km} / \mathrm{h}$ of delta-V).

In two cases, the effect of forces under the ball of the foot is clear, (pictures 1,2).

Picture 1: $4^{\text {th }}$ and $5^{\text {th }}$ left metatarsal condyle fractures. Restrained driver. Delta-V $=45$ km / h. Footwell intrusion $=200 \pm 50 \mathrm{~mm}$. Mean acceleration $=10 \mathrm{~g} .12$ o'clock, $2 / 3$ overlap
 impact on the driver side.

Mechanism: forces acting directly under the metatarsal condyles, due to the wheel well intrusion, associated with the inertial effect of the leg and/or muscular contractions.

Picture 2: Several fractures of the left foot. $1^{\text {st }}$ and $2^{\text {nd }}$ metatarsal condyle fractures, plus $3^{\text {rd }}$ and $4^{\text {th }}$ metatarsal condyle and basis fractures. Cuboid fracturedislocation. Scaphoid fracture and $1^{\text {st }}$ and $2^{\text {nd }}$ cuneiform fractures. Restrained driver. Delta-V $=49 \mathrm{~km} / \mathrm{h}$. Footwell intrusion $=400 \pm 50 \mathrm{~mm}$. Mean acceleration $=9 \mathrm{~g} .12$ o'clock, $1 / 2$ overlap impact on the driver side.

Mechanism: forces acting directly under the metatarsal condyles, due to the intrusion of the wheel into the compartment, associated with the inertial effect of the leg and/or muscular contractions.

- Fractures of malleoli (after eliminating the 15 cases with sprains): 6 cases. Inversion and eversion motions due to forces acting on the ball of the foot.
In two cases, fractures were caused by a lateral impact on the ankle. However, the associated footwell deformations are rather singular, (picture 3 and 4).

Picture 3: right medial malleolus fracture, tibial fibular ligament rupture. Unrestrained driver. Delta-V $=40 \mathrm{~km} / \mathrm{h}$. Footwell intrusion $=200 \pm 50 \mathrm{~mm}$. Mean acceleration $=12 \mathrm{~g} .12$
 o'clock, $1 / 2$ overlap impact on the passenger side.

Mechanism: lateral impact on the lateral side of the right ankle, due to the intrusion of the central structure of this car.

Picture 4: left medial malleolus fracture. Restrained driver. Delta-V $=47$ km / h. Footwell intrusion $=500 \pm 50 \mathrm{~mm}$. Mean acceleration $=6 \mathrm{~g} .11$ o'clock, $1 / 3$ overlap impact on the driver side.

Mechanism: lateral impact on the lateral side of the left ankle, due to the buckling of the left side sill.

Lestina [1992] ${ }^{5}$ confirms the mechanism of inversion and eversion by her study on 23 cases.

5. CONCLUSION.

The multiple mechanisms of lower leg injuries are slightly less important compared with the knee impacts on the dashboard which involved femur and pelvis fractures together with knee injuries, but they remain quite frequent. Metatarsal fractures, malleolus fractures and ankles sprains are the most frequent injuries found for the lower leg, according to this study.

The risk of lower leg injury remains the same for all categories of occupant, except unrestrained passengers.

- Seat belt use does not contribute to a reduction of these lesions.
- The occupant's age has little influence on leg injury statistics.
- The velocity change delta-V, the footwell intrusion and the impact configuration are the parameters having predominant influence on leg injuries. The 50th percentile for delta-V is $47 \mathrm{~km} / \mathrm{h}$ and 200 mm for the footwell intrusion. The risk of injury doubles when the impact is located on the occupant near side.
- The effect of the pedals on foot injuries has been highlighted, even in the case of right-hand driving. The left ankle of passengers, near the transmission tunnel, is more frequently injured, especially as far as ankle sprains are concerned.
The main mechanisms consist of forces acting under the ball of the foot creating metatarsal fractures, and inversion and eversion motions of the foot producing malleolus fractures. This work represents a first step towards a global study involving PMHS experiments and Hybrid III dummy tests.

Acknowledgements:

This project is supported by Renault S.A. and Volvo Car Corporation.
We would like to thank Pr. Claude Got from Ambroise-Paré Hospital, Jean-Yves Foret-Bruno, Farid Bendjellal Renault S.A., Christian Thomas and his colleagues, APR, for their fruitful discussions and advice.

Opinions given in this article are those of the authors and are not necessarily those of Renault and Volvo.

REFERENCES

1. BACKAITIS S.H., ROBERTS J.V., "occupant injury Patterns in Crashes with Airbag Equipped Government Sponsored Cars", $31^{\text {st }}$ Stapp Car Crash Conference Proceedings, November 1987.
2. GLOYNS P.F., HAYES H.R.M., RATTENBURY S.J., THOMAS P.D., MILLS H.C., GRIFFITHS D.K.,
"Lower limb injuries to car occupants in frontal impacts", Proceedings of the $4^{\text {th }}$ international IRCOBI Conference on the Biomechanics of Trauma, September 1979.
3. HUELKE D.F.,
"Anatomy of the lower extremity - an overview", SAE Symposium on Biomechanics and Medical Aspects of Lower Limb Injuries, P-186, pp.1-22, San Diego, CA, Oct., 1986.
4. HUELKE D.F., COMPTON T.W., COMPTON C.P.,
"lower extremity injuries in frontal Crashes: injuries, locations AIS, and Contacts", SAE Paper 910811, 1991.
5. LESTINA Diane C., KUHLMANN T.P., KEATS T.E., ALLEY R.M.,
"Mechanisms of fracture in ankle and foot injuries to drivers in motor vehicle crashes", 36th Stapp Conference Proceedings, pp. 59-68, 1992.
6. MORGAN Richard M., EPPINGER Rolf H., HENNESSEY Barbara C., "Ankle Joint injury Mechanism for adults in frontal automotive impact", $35^{\text {th }}$ Stapp Car Crash Conference, 1991.
7. NAHUM A.M., SIEGEL A.W., HIGHT P.V., BROOKS S.H., "Lower Extremity Injuries of front Seat Occupants", SAE Paper 680483, May 1968.
8. OTTE D., Von RHEINBABEN H., ZWIPP H.,
"Biomechanics of injuries to the foot and ankle joint of car drivers and improvements for an optimal car floor development", $36^{\text {th }}$ Stapp Conference Proceedings, pp. 43-58, 1992.
9. PATTIMORE Dan, WARD Edmund, THOMAS Pete, BRADFORD Mo, "The Nature and Cause of lower limb injuries in car crashes", 35th STAPP Car Crash Conference, 1991.
10. PLETSCHEN B., SHEUNERT D., DEUBERT M., HERRMANN R., ZEIDLER F.,
"Application of the Injury Cost Scale (ICS) to Mercedes-Benz Accident Data", $34^{\text {th }}$ Stapp Car Crash Conference, 1990.
11. STATES J.D., WILLIAMS J.S., KORN M.W., KLUGE D.N.,
"Obscure injury Mechanisms in Automobile accidents", Proceedings 15th Conference of AAAM, October 1971.
12. STATES J.D.,
"Adult occupant injuries of the lower limb", SAE Symposium on Biomechanics and Medical Aspects of Lower Limb Injuries, P-186, pp.97-108, San Diego, CA, Oct., 1986.
13. WARD Edmund, PATTIMORE Dan, THOMAS Pete, BRADFORD Mo, "leg in juries in car accidents - are we doing Enough", proceeding IRCOBI pp 321 336, 1991.
14. ZEIDLER F., STURTZ G., BURG H., RAU H., "injury Mechanisms in Head-on Collisions involving glance-off", 25th Stapp Car Crash Conference, September 1981.

ANNEXE
 THE 208 OCCUPANTS WITH LOWER LEG INJURIES.

K 0 0 5 2 2 $\mathbf{2}$ a 0 0 0	$\begin{aligned} & \text { E } \\ & \text { © } \\ & \sum_{5}^{0} \\ & \mathbf{2} \\ & \mathbf{M} \\ & \hline \end{aligned}$	OCCUPANT'S SEAT		AGE (years)		\qquad				OVERIAP		
-	-1620_2	PAS	NO	27	20	0	0	6	12	1/2 Right	Talar frecture	Right
	-1873_1	DRV	YES	44	30	0	0	10	12	$2 / 3$ Left	Malleolue frectures	Unknown Right
	2600_1	DRV	YES	21	62	100	0	13	11	2/3 Left	Metatareal irscturas	Right
	2688_2	PAS	YES	22	41	0	0	10	12	100\% No intrusion	Toe frecture	Left
	2664_2	PAS	YES	17	66	600	300	10	12	1/3 Right	-Lower leg frecture"	Rioht
	2871_2	PAS	YES	26	41	300	300	6	11	1/3 Right	Liefranc-line aprain	Left
	2676_2	PAS	NO	32	60	400	200	11	1	1/3 Right	-Lower leg frecture*	Right \& Left
	2681_2	PAS	NO	24	33	0	0	7	12	1/2 Right	Metataral fractures	Right
	2761_1*	DRV	NO	47	65	300	100	12	12	1/2 Right	Deltoid ligament aprein	Left
	2761_1*	DRV	NO	47	65	300	100	12	12	1/2 Right	Metatareal frectures	Left
10	2761_2	PAS	NO	71	65	300	100	12	12	1/2 Right	Malleolus frectures	Bilaterat Left
11	-3068_1	DRV	NO	48	43	0	0	10	12	100\% No intrusion	Metatereal fractures	Rioht
12	-3260_1	DRV	NO	23	48	300	100	14	12	100\% Left	Fibule heed or upper fibule frecture	Right
13	-3270_1	DRV	NO	30	61	300	100	14	12	100\% With intrusion	Matatareal frectures	Right
14	-3270_2*	PAS	NO	28	61	300	100	14	12	100\% With intrusion	Malieolus frectures	Leteral Left
	-3270_20	PAS	NO	28	61	300	100	14	12	100\% With intrusion	Malleolus frectures	Medial Right
15	-3320_10	Dav	YES	28	48	400	200	0	12	1/2 Left	cuboid frecture	Lere
	-3329_ ${ }^{\circ}$	Dav	YES	28	40	400	200	θ	12	1/2 Lets	Cuneitorm frecture	Lets
	-3320_10	DRV	YES	28	40	400	200	0	12	1/2 Lete	Metatereel frectures	Lets
	_3320_10	DRV	YES	28	40	400	200	0	12	1/2 Left	Scaphoid trecture	Lets
16	-3342_1	DRV	YES	34	60	200	200	11	12	2/3 Left	"Lower leg trecture"	Right
17	3376_1	DRV	YES	47	60	600	100	11	12	$2 / 3$ Left	-Ankle aprein*	Right
18	3390_1	DRV	NO	43	68	300	100	13	12	100\% With intrusion	Tibiel diephyaia frecture	Right a Left
19	3480_1	DRV	NO	33	48	300	300	9	12	1/3 Left	Fibule treed or upper fibide frecture	Left
20	-3496_1	DRV	NO	30	40	0	0	10	12	1/2 Left	Tibial diephyare frecture	Rioht
21	-3649_1	DRV	YES	46	46	200	0	10	12	213 Left	Metatoreal fractures	Lete
22	3613_1	DRV	NO	21	60	300	200	12	1	100\% Lett	- Ankle aprain*	Right
23	3670_1	DRV	YES	41	69	800	400	11	12	100\% Left	"Lower leg tracture" (distal pert)	Right \& Left
24	-3670_20	PAS	NO	39	60	800	400	11	12	100\% Left	Ankle frecture	Lett
	-3670_2 ${ }^{\circ}$	PAS	NO	39	60	800	400	11	12	100\% Left	Tibre frecture, (diatal pert)	Left
26	3770_2	PAS	NO	43	28	0	0	7	12	1/3 Right	Metatarsal frectures	Rioht
26	3800_1	DRV	YES	29	64	400	400	8	12	1/2 Left	Malleolus frectures	Mediel Right
27	3877_1 ${ }^{\circ}$	DRV	YES	34	63	200	100	14	12	100\% Left	-Anke aprain"	Right
	-3877_10	DRV	YES	34	63	200	100	14	12	100\% Left	-Foot trectura"	Left
28	-3888_2	PAS	NO	10	70	600	600	13	12	1/2 Left	-Lower leg tracture*	Left
28	-3890_1	DRV	NO	46	44	300	100	8	12	1/2 Left	Pilon tibial	Rioht
30	-3803_2 ${ }^{\circ}$	PAS	NO	23	46	600	300	8	12	2/3 Right	Metataraal frectures	Right
	3803_2*	PAS	NO	23	46	600	300	8	12	2/3 Right	Toe dialocation	Rioht
31	3967_1	DRV	No	71	40	200	300	12	12	1/2 Rught	Malleolua frecturea	Bilateral Rught
32	3068_1	DRV	NO	30	30	0	0	6	12	2/3 Left	-Ankle aprsin"	Left
33	4044_1	DRV	NO	27	67	600	400	12	12	2/3 Right	- Ankle eprain ${ }^{-}$	Right \& Left
34	4162_1	DRV	NO	66	40	0	0	7	12	1/2 Lett	Talo-ceiceneal dialocation	Left
36	4220_1	DRV	NO	49	64	100	0	17	12	100\% With intruaion	Toe dialocation	Right
36	-4238_1	DRV	NO	32	36	200	100	8	12	213 Left	Calcensal-fibuier aprain	Riohe
37	-4266_2	PAS	NO	26	20	0	0	6	12	$1 / 2$ Left	"Ankle aprain*	Left
38	-4262_1	DRV	NO	22	43	300	100	9	11	$2 / 3$ Left	Metatersal frectures	Right
30	4433_ ${ }^{10}$	DRV	NO	26	60	300	200	13	12	2/3 Left	Deltoid ligament aprein	Left
	4433_19	DRV	NO	26	60	300	200	13	12	213 Left	Teler frecture	Right
40	4607_1	DRV	YES	64	43	0	0	10	12	100\% No intrusion	Taler frecture	Unknown
41	4663_1	DRV	YES	21	38	0	0	8	12	$1 / 2$ Left	Toe Precture	Left
42	4693_2	PAS	YES	36	62	600	200	7	12	1/3 Right	Taiar fracture	Right
43	4684_20	PAS	NO	47	36	0	0	0	12	2/3 Right	- Ankle aprain ${ }^{\circ}$	Left
	-4684_2 ${ }^{\circ}$	PAS	NO	47	36	0	0	8	12	2/3 Rroht	Meterareal frectures	Left
44	4737_1	DRV	YES	64	20	0	0	4	1	$2 / 3$ Left	Mallioolvs frectures	Bilateral Lett
46	47461	DRV	NO	48	38	0	0	7	11	$1 / 2$ Left	Malieoius tractures	Medial Left

46	4765_2*	PAS	NO	45	33	100	0	6	12	1/4 Rioht	Molleoius traetures	Biloteral Right
	4766_2 ${ }^{\circ}$	PAS	NO	45	33	100	0	6	12	1/4 Rioht	Talo-caiceneal dialocation	Rioht
47	4781_1*	DRV	NO	25	67	200	100	13	12	100\% With intusion	Calcaneal frecture	Rioht
	-4781_1 ${ }^{\circ}$	DRV	NO	26	67	200	100	13	12	100\% With intrusion	Malleolus fractures	Loteral Lett
48	4800_1	DRV	YES	60	40	600	400	θ	11	1/2 Let:	Calcaneal-fibular aprain	Right
48	4800_2	PAS	YES	64	46	600	400	θ	11	1/2 Left	Cuneiform tracture	Riohe
60	4842_1	DRV	NO	25	63	600	300	θ	11	1/4 Lett	Tibial \& fibule diaphyais tractures	Left
51	-4841_1	DRV	NO	56	20	0	0	6	12	2/3 Rioht	Tareal bone dialocations	Righe
62	-4867_10	DRV	YES	56	28	100	0	7	11	2/3 Rioht	Cuboid frecture	Left
	4867_10	DRV	YES	65	29	100	0	7	11	213 Right	Metataral fractures	Left
63	6004_1	DRV	NO	46	46	300	200	12	11	100\% With intrusion	Tibiel diaphysie fracture	Rioht
54	6163_2	PAS	No	18	50	200	0	16	12	100\% Withintrusion	Tibial \& fibula diaphyoia fractures	Right
65	$6164{ }^{6} 1{ }^{10}$	DRV	No	44	52	100	0	14	12	2/3 Right	Metatarsal frecturee	Right
	6164_1*	DRV	No	44	52	100	0	14	12	2/3 Rioht	Toe dietocation	Right
66	6160_1	DRV	No	30	48	100	200	11	12	100\% With interusion	-Ankle aprain ${ }^{\text {a }}$	Left
67	6310_2	PAS	YES	17	46	100	100	14	12	100\% With intrusion	Malieolve fractures	Biloteral Lett
68	6318_1	DRV	NO	30	42	0	0	8	12	100\% No intrusion	-Lower leg fracture ${ }^{-}$	Right
68	6320_2	PAS	YES	25	33	0	0	θ	12	2/3 Lett	-Foot aprain"	Left
60	6378_2	PAS	NO	71	28	0	0	θ	12	1/2 Lett	Malleolue fractures	Leterel Right
61	6407_2	PAS	No	44	24	0	0	θ	11	213 Lett	Tarsal bone dialocatione	Right
62	6412_1*	DRV	No	23	61	600	200	12	12	100\% Lett	-Ankle disiocation*	Rioht
	6412_10	DRV	No	23	61	600	200	12	12	100\% Lett	Fibule frecture	Righe
83	6420_1	DRV	No	32	36	100	0	8	12	2/3 Lett	Colconeal-fibular aprain	Left
64	6431_1	DRV	YES	21	45	0	0	14	12	100\% No intrusion	Metactareal fracturee	Right
65	6432_1*	DRV	YES	51	43	0	0	13	12	2/3 Lett	Scaphoid fracture	Right
	6432_1*	DRV	YES	51	43	0	0	13	12	2/3 Lett	Telar frecture	Rioht
66	6614_1	DRV	No	46	43	100	0	12	12	2/3 Left	Tibial \& fibule diephysie tractures	Right
67	6610_1	DRV	NO	48	27	0	0	θ	12	1/2 Left	Toe dislocation	Righe
88	6637_1	DRV	NO	41	36	100	0	6	11	1/4 Lett	Calcaneal-fibuiar aprain	Left
68	6604_1	DRV	YES	28	38	200	0	7	12	1/2 Lett	-Ankle aprain*	Right
70	6810_2	PAS	NO	51	37	0	0	10	12	100\% No intrcsion	Fibula hoed or upper fibule frecture	Lett
71	_6676_1	DRV	YES	21	65	600	300	10	12	1/3 Laft	Tibiol \& fibule diephysia frectures	Lett
72	6688_1	DRV	NO	25	65	300	100	16	12	100\% With intrusion	Malleotive frectures	Bilateral Right
73	6720_2	PAS	No	40	31	0	0	8	12	2/3 Left	Fibule head or upper fibule fracture	Rioht
74	6768_1	DRV	YES	36	43	400	400	7	11	1/3 Lett	Metotoreal frectures	Left
76	6781_1	DRV	No	37	51	100	0	14	12	100\% Left	Pilon tibial	Right
76	6787_2	PAS	No	23	43	200	0	10	12	1/3 Right	Malleolve fractures	Lateral Lett
77	-6781_2	PAS	No	22	28	0	0	7	12	1/2 Lett	-Ankle aprain"	Left
78	6818_2	PAS	No	23	50	600	300	12	12	1/3 Lett	Malleolve fractures	Medial Left
78	6876_2	PAS	YES	40	21	0	0	6	12	2/3 Right	Ankle tracture	Unknown
80	_6808_1	DRV	YES	56	51	300	300	θ	12	1/3 Lett	Oeltoid ligament aprain	Left
81	6844_2*	PAS	No	18	68	600	300	11	12	1/2 Lett	Malleolus tractures	Medial Rioht
	6844_2 ${ }^{\circ}$	PAS	No	18	66	800	300	11	12	1/2 Lett	Seaphoid frecture	Rioht
82	6856_1	DRV	YES	23	60	600	600	8	12	1/2 Left	Metatereat frectures	Left
83	6880_1	DRV	NO	38	65	600	400	10	12	1/2 Left	Calcaneal frecture	Lett
84	C103_1	DRV	No	56	26	0	0	6	12	100\% No intrusion	Calcaneal-fibular aprain	Right
86	6136_20	PAS	NO	22	44	200	100	8	12	1/3 Right	Calcaneal fracture	Right
	-6136_2*	PAS	No	22	44	200	100	8	12	1/3 Rioht	Malleolus tracturee	Lateral Rioht
86	-6182_2*	PAS	YES	46	61	300	200	17	12	100\% With intrusion	Cuboid fracture	Rioht
	-8182_20	PAS	YES	48	61	300	200	17	12	100\% With intrusion	Metataraal fractures	Rioht \& Left
87	-6266_1	DRV	YES	30	30	200	100	6	11	1/4 Lett	Calcaneal-fibuler aproin	Lett
88	-6306_2	PAS	No	32	41	0	0	8	11	2/3 Lett	- Ankle aprain ${ }^{\text {- }}$	Lete
88	-6312_1	DRV	No	36	37	0	0	θ	12	1/2 Lett	Tarsal bone dialocations	Right
80	6346_2	PAS	No	48	28	0	0	7	1	100\% No intrusion	Matatereal fractures	Left
81	6362_1	DRV	No	24	52	400	200	θ	11	1/2 Leth	Tibial diaphyaie frecture	Unknown
92	6403_1	DRV	YES	38	47	0	0	13	12	100\% No intrusion	Metatereal frectures	Rioht
93	6412_1	DRV	YES	21	66	600	600	10	11	1/2 Left	Fibule frecture	Righe
94	6474_1	DRV	NO	28	48	0	0	14	12	100\% No intrusion	Taler frecture	Right
86	6476_2	PAS	YES	18	51	700	600	8	12	2/3 Lett	-Ankle sprain*	Left
96	6662_1	DRV	NO	33	38	100	100	8	1	1/2 Riche	-Foot frecture"	Left
87	6668_1	DRV	YES	18	78	700	600	16	12	100\% With intrusion	Metatereal frectures	Right
98	-6660_2 ${ }^{\circ}$	PAS	No	14	78	700	600	16	12	100\% With intrwion	Cuboid fracture	Lett
	-6668_2*	PAS	No	14	78	700	600	16	12	100\% With intrwion	Malieolus fractures	Bilaterel Rioht
	-8680_ 2°	PAS	NO	14	78	700	600	16	12	100\% With intrusion	Malleolus fractures	Bilateral Left
	6660_ ${ }^{\circ}{ }^{\circ}$	PAS	NO	14	78	700	600	16	12	100\% With intrusion	Talo-calcaneal dielocation	Rioht
88	-6706_1	DRV	YES	28	61	0	100	12	1	100\% Lelt	Pilon tibiel	Right
100	-6738_2	PAS	YES	17	52	400	100	8	11	1/2 Right	Tibis fracture, (diatal pertl	Left
101	6765_2 ${ }^{\circ}$	PAS	YES	36	32	100	0	θ	12	100\% Right	-Ankle sprain*	Right
	6765_20	PAS	YES	36	32	100	0	θ	12	100\% Right	Scephoid frecture	Lete
102	6772_1*	DRV	No	34	67	300	100	16	12	100\% Rioht	Tibial \& fibule diaphyais frectures	Right \& Left
	6772_1*	DRV	No	34	67	300	100	16	12	100\% Rioht	Toe dislocation	Right
103	67781	DRV	No	60	40	100	0	9	11	$2 / 3$ Leit	Tibial \& fibule diaphysis tractures	teft

104	6780_20	PAS	YES	63	72	400	300	16	12	100\% Righ:	Ankle frecture	Left
	6780_20	PAS	YES	63	72	400	300	16	12	100\% Right	Fibule fracture	Right
106	6803_1	DRV	NO	26	53	400	200	9	12	1/2 Left	Tibial \& fibule diaphysis frectures	Lett
106	6806_2	PAS	YES	56	63	400	100	15	12	100\% With intrusion	Tibial \& fibule diaphysis frectures	Right
107	6812_1	DRV	YES	30	59	1000	800	13	12	213 Righe	Malleolus tractures	Bilateral Rioht
108	6896_1	DRV	Yes	32	24	0	0	6	12	213 Left	-Ankle aprain'	Righ:
108	6807_2	PAS	No	70	23	0	0	6	11	1/2 Left	-Ankle aprain ${ }^{-}$	Left
110	6817_1	DRV	Yes	42	43	100	0	10	1	2/3 Right	- Ankle aprsin ${ }^{-}$	Righ:
111	-6848_2	PAS	No	28	18	0	0	4	12	$2 / 3$ Left	-Anklo aprain*	Left
112	7076_1	DRV	YES	24	27	0	0	6	1	2/3 Lett	'Ankle aprain'	Righe
113	-7105_10	DRV	YES	43	60	600	100	16	12	2/3 Right	Talar frecture	Left
	$\mathbf{- 7 1 0 5}^{10}$	DRV	YES	43	60	600	100	16	12	2/3 Right	Tarsal bone dislocations	Righe
114	7185 _10	DRV	YES	26	74	700	600	12	1	2/3 Right	Cuneitorm fracture	Righe
	$\mathrm{-7185}^{10}$	DRV	YES	28	74	700	600	12	1	2/3 Rioht	Metotareal frectures	Right
115	7205_1	DRV	No	23	71	600	200	20	12	100\% With intrusion	Malleolua fractures	Bilateral Left
116	7208_10	DRV	No	70	50	300	100	θ	12	1/2 Left	Calcaneal fracture	Left
	-7206_1*	DRV	No	70	50	300	100	9	12	$1 / 2$ Left	Talar tracture	Left
117	7233_1	DRV	YES	28	65	600	600	10	11	$1 / 2$ Left	Calcaneal frecture	Right
118	7234_1	DRV	No	44	63	300	200	θ	1	213 Left	Cunoitorm fracture	Right
118	-7236_1	DRV	YES	30	52	600	600	9	11	1/2 Left	Toe frecture	Left
120	-7262_1*	DRV	No	25	46	200	100	11	12	2/3 Right	Malieolus tractures	Loteral Lete
	$\mathbf{7 2 5 2}^{7}{ }^{\circ}$	DRV	No	25	46	200	100	11	12	$2 / 3$ Right	Taiar frecture	Left
121	.7303_1	DRV	No	34	20	0	0	3	1	1/3 Righe	-Ankie aprain*	Righ:
122	7323_1	DRV	YES	65	60	400	300	12	1	2/3 Left	Metateraal dialocations	Lete
123	7410_1	DRV	YES	20	56	600	600	8	12	1/2 Left	Fibuta frecture	Lete
124	-7448_1 ${ }^{\circ}$	DRV	No	50	4θ	400	200	θ	12	1/3 Lef:	Malieolus frectures	Leteral Rioht
	$\mathrm{-7440}^{10}$	DRV	No	50	4θ	400	200	θ	12	1/3 Left	Metoteraal fractures	Lete
	-7448_1*	DRV	No	50	48	400	200	θ	12	1/3 Left	Tibial \& fibute diaphysia fractures	Left
125	-7449_1 ${ }^{\circ}$	DRV	No	25	57	100	100	12	12	1/2 Left	Deltoid ligament aprain	Right
	$\mathbf{7 4 4 8}^{74}{ }^{\circ}$	DRV	No	25	67	100	100	12	12	$1 / 2$ Left	Malleolus frectures	Leteral Right
	7449_1*	drv	NO	25	67	100	100	12	12	$1 / 2$ Left	Metatarsal fractures	Righe
	7448_1*	DRV	No	25	67	100	100	12	12	1/2 Left	Talar fracture	Righe
126	7465_1	DRV	YES	60	54	200	200	12	12	$1 / 2$ Left	Fibula frecture	Righe
127	7464_1	DRV	YES	67	46	200	100	11	12	1/2 Left	- Ankie aprain	Right
128	7464_2	PAS	YES	62	46	200	100	11	12	1/2 Left	Calcaneal fracture	Right
128	7483_1	DRV	YES	67	67	500	200	9	11	1/3 Left	Cuboid fracture	Lett
130	7485_1 ${ }^{\circ}$	DRV	No	34	28	0	0	8	12	100\% No intrusion	Scaphoid fracture	Righe
	$\mathrm{-7485}^{7}{ }^{\circ}$	DRV	No	34	28	0	0	9	12	100\% No intusion	Taier fracture	Righ:
131	-7485_2	PAS	No	34	28	0	0	9	12	i00\% No intusion	Metataraal fractures	Right
132	7600_1	DRV	Yes	75	60	400	200	16	12	100\% Righe	Tibie \& fibule fracture. (distal part)	Right
133	_7600_2	PAS	YES	72	60	400	200	16	12	100\% Right	Metatarsal fractures	Right
134	-7603_1	DRV	YES	50	32	0	0	θ	12	$2 / 3$ Left	Toe dislocation	Righ:
136	_7607_1	DRV	YES	32	60	100	100	11	12	1/3 Left	Toe aprain	Left
136	_7600_1	DRV	YES	57	51	100	200	10	12	1/2 Left	Cuboid fracture	Right
137	_7608_1	DRV	YES	40	57	400	200	11	12	1/2 Left	Toe dislocation	Right
138	-7617_2	PAS	No	39	80	100	100	16	12	100\% Left	-Lower leofrecture*	Left
138	_7610_1	DRV	YES	54	47	500	300	9	12	1/2 Left	Mollieotus frectures	Medial Rioht
140	_7622_1	DRV	YES	63	42	0	0	10	12	213 Left	Tibie \& fibula fracture, (distal part)	Left
141	_7623_2	PAS	YES	50	42	100	100	10	11	1/2 Lett	-Ankle aprain*	Unknown
142	_7624_1	DRV	No	68	56	300	400	9	12	1/3 Rioht	Masteolus fracturea	Brateral Right
143	7633_1	DRV	No	73	54	400	200	13	1	213 Right	Metatarsal fractures	Rioht
144	7634_1	DRV	YES	29	50	100	100	14	12	100\% Left	-Ankle sprain*	Right
146	7630_1	DRV	No	34	52	0	100	11	1	2/3 Left	Cuneitorm tracture	Left
146	7694_10	DRV	No	23	65	600	600	10	12	1/2 Left	- Ankle dialocation ${ }^{\text {- }}$	Left
	-7694_10	DRV	No	23	65	600	500	10	12	1/2 Left	Tibie \& fibule frecture, (distel part)	Lett
147	-7701_1	DRV	No	56	56	300	300	11	12	213 Left	Fibule frecture (distol part)	Left
148	-7722_1	DRV	No	44	37	100	0	10	1	$1 / 2$ Right	Talar fracture	Righ:
148	-7742_1 ${ }^{\circ}$	DRV	YES	18	43	200	100	10	11	1/2 Left	Metatareal fractures	Right
	-7742_1*	DRV	YES	18	43	200	100	10	11	1/2 Left	Toe dialocation	Right
160	-7765_1 ${ }^{\circ}$	DRV	YES	38	43	400	400	θ	11	1/4 Left	Molteotua frectures	Bilateral Rught
		DRV	YES	38	43	400	400	8	11	1/4 Lett	Toe frecture	Left
151	7776_2	PAS	YES	37	60	600	400	12	12	2/3 Right	Ankie fracture	Lett
162	-7786_1 ${ }^{\circ}$	DRV	No	44	73	300	100	16	12	100\% With intrusion	Cuboid frecture	Right
	$\mathrm{-7786}^{10}$	DRV	No	44	73	300	100	16	12	100\% With intrusion	Cuneitorm fracture	Righ:
163	.7782 1	DRV	No	56	42	200	100	θ	12	1/2 Lef:	Malleolus frectures	Medial Left
154	7810_1	DRV	Yes	44	48	200	100	10	11	1/2 Left	Metatarasi fractures	Left
165	7843_1	DRV	YES	29	56	100	0	18	12	100\% With intrusion	Caicaneal-fibular sprain	Right
166	7843_2	PAS	YES	30	56	100	0	10	12	100\% With intrusion	-Ankle sprain ${ }^{\text {- }}$	Left
167	_7927_1	DRV	NO	64	37	100	100	6	12	1/4 Lef:	Calcaneal-fibuler sprain	Right
168	7836_2	PAS	No	18	62	100	100	8	12	213 Left	-Ankle sprain ${ }^{\text {- }}$	Left
168	7848_2	PAS	YES	61	37	100	100	10	1	$2 / 3$ Left	Taiar tracture	Right
160	78981	DRV	No	22	55	600	200	10	12	1/3 Lett	Lower leo fracture ${ }^{-}$	Right \& Lef:

161	8001_2	PAS	YES	46	40	0	0	8	11	2/3 Rioht	-Foot fracture ${ }^{\text {- }}$	Left
162	0020_1	DRV	YES	38	62	600	600	10	12	1/2 Left	Calcaneal fracture	Rioht
163	0024_10	DRV	NO	40	61	300	200	11	12	100\% Left	Malieoilus fractures	Medial Right
	8024_1*	DRV	NO	40	51	300	200	11	12	100\% Left	Metatarsal fractures	Rioht
	8024_10	DRV	NO	40	51	300	200	11	12	100\% Left	Toe fracture	Left
164	8057_1	DRV	NO	23	68	200	100	16	12	100\% Left	Metatarsal fractures	Left
165	8067_1	DRV	YES	36	48	100	0	16	12	100\% Left	Calcancal fracture	Rioht
166	8077_1	DRV	YES	32	45	100	100	10	11	1/2 Left	-Ankie aprain ${ }^{-}$	Left
167	0114_1	DRV	YES	26	55	400	300	12	12	100\% With intrusion	Malleolus fractures	Medial Lett
168	0117_1	DRV	YES	23	50	100	200	12	12	100\% Left	Calcaneal-fibutar aprain	Left
168	8188_10	DRV	NO	18	76	700	0	13	12	100\% With intrusion	Cuboid fracture	Rioht
	_8180_10	DRV	NO	18	75	700	0	13	12	100\% With intrusion	Fibula fracture	Right \& Left
	_8188_10	DRV	No	18	75	700	0	13	12	100\% With intrusion	Metataraal fractures	Rioht
	- $8189^{(10}$	DRV	NO	18	76	700	0	13	12	100\% With intrcsion	Scaphoid fracture	Rioht
	-8189_10	DRV	NO	18	75	700	0	13	12	100\% With intrusion	Talar fracture	Let
170	_8180_2	PAS	YES	33	68	0	500	10	11	2/3 Left	Fibula head or upper fibula fracture	Lett
171	-8188_10	DRV	NO	42	72	700	600	13	10	100\% With intrusion	Calcaneal fracture	Riohe
	_8188_10	DRV	NO	42	72	700	600	13	10	100\% With intrusion	Cuboid fracture	Rioht
		DRV	NO	42	72	700	600	13	10	100\% With intruaion	Cunsiform fracture	Right
	-8180_10 ${ }^{\circ}$	DRV	NO	42	72	700	600	13	10	100\% With intrusion	Metatareal fracturea	Rioht
172	0273_2	PAS	YES	28	37	200	100	6	12	213 Right	-Foot frecture*	Left
173	-8274_1*	DRV	YES	36	68	700	700	11	12	2/3 Right	Malleolus fractures	Bilateral Left
	8274_10	DRV	YES	36	68	700	700	11	12	213 Right	Metataraal fractures	Left
174	8274_2*	PAS	YES	14	68	700	700	11	12	$2 / 3$ Rioht	Calcaneal fracture	Left
	8274_2*	PAS	YES	14	68	700	700	11	12	2/3 Right	Malleolus fracturea	Medial Left
175	0503_1	DRV	YE6	48	47	600	300	6	11	1/3 Left	Melleolus frectures	Meciel Lelt
176	8530_2	PAS	YES	13	50	400	300	8	12	1/3 Rioht	Toe dialocation	Left
177	8544_1	DRV	NO	32	43	100	200	8	12	1/2 Right	Calcaneal-fibutar aprain	Rioht
178	8580_2	PAS	NO	18	43	700	0	10	12	100\% With intrusion	-Foot fracture ${ }^{-}$	Left
178	-8600_1 ${ }^{\circ}$	DRV	YES	56	47	300	200	9	12	1/2 Left	Metatarasi fracturea	Left
	8600_1 ${ }^{\circ}$	DRV	YES	66	47	300	200	8	12	1/2 Left	Toe dislocation	Left
180	86162°	PAS	YES	18	74	600	600	16	11	100\% With intrusion	Tibial diaphysia fracture	Left
	-8616_2*	PAS	YES	18	74	600	600	16	11	100\% With intrusion	Toe fracture	Left
181	8638_1	DRV	YES	28	58	300	300	8	12	1/2 Left	Metataral fractures	Right
182	8704_1*	DRV	NO	41	63	600	300	16	1	100\% With intrusion	Metataraal dialocations	Rioht
	[8704_1*	DRV	No	41	63	600	300	16	1	100\% With intrusion	Scaphoid Iracture	Rioht
183	8704_2*	PAS	no	22	63	600	300	16	1	100\% With intrusion	Metataral fractures	Rioht
	8704_2*	PAS	No	22	63	600	300	16	1	100\% With intrusion	Toe dialocation	Rioht
184	8714_2	PAS	YES	18	46	300	100	7	12	1/3 Rioht	Metatareal fractures	Right
165	8722_1	DRV	YES	55	50	0	0	1	12	100\% No intrusion	Pilon tibial	Rioht
186	8723_10	DRV	YES	22	76	600	500	17	11	100\% Left	Talar fracture	Left
	-8723_1 ${ }^{\circ}$	DRV	YES	22	75	500	500	17	11	100\% Left	Tarasl bone dislocations	Left
187	-8723_2	PAS	YES	18	75	600	500	17	11	100\% Left	Malleolus fractures	Lateral Right
188	8728_1 ${ }^{\circ}$	DRV	YES	60	40	300	200	6	12	1/2 Left	Malleolus fractures	Medial Rıoht
	-8720_1 ${ }^{\circ}$	DRV	YES	60	40	300	200	6	12	1/2 Left	Metataras fractures	Rioht
	8728_1*	DRV	YES	60	40	300	200	6	12	1/2 Lett	Scaphoid fracture	Right
	8728_1 ${ }^{\text {- }}$	DRV	YES	60	40	300	200	6	12	1/2 Left	Talo-calceneal dialocation	Right
188	8728_2	PAS	YES	58	40	300	200	6	12	1/2 Left	Talar fracture	R oht
180	8742_1	DRV	YES	68	48	400	200	6	12	1/3 Left	Metataraal fractures	Left
181	0834_2	PAS	YES	40	28	100	100	8	1	1/3 Rioht	Calcaneal-fibular aprain	Rioht
182	8868_1	DRV	YES	21	32	0	0	8	1	1/2 Rioht	Malleolus fractures	Lateral Lett
183	8878_1	DRV	No	27	38	600	300	5	11	1/4 Left	Malleolus fractures	Medial Left
184	8861_2	PAS	NO	18	38	100	0	6	12	1/3 Rioht	Calcaneal-fibular aprain	Rioht
186	-8893_1	DRV	Yes	29	63	400	100	0	12	1/2 Lett	Fibula fracture	Rioht
186	_8002_1	DRV	YES	46	40	0	0	10	12	2/3 Left	Malleolus tractures	Medial Left
187	-8003_1*	DRV	YES	66	40	200	100	10	12	$2 / 3$ Left	Calcaneal fracture	Rioht
	-8003_1*	DRV	YES	66	40	200	100	10	12	213 Left	Malieolus fractures	Lateral Rioht
188	0026_1	DRV	YES	22	74	300	400	15	12	100\% Right	-Ankle aprain*	Left
188	-8037_2	PAS	NO	63	41	100	100	11	12	1/2 Right	Ankle fracture	Left
200	8042_1	DRV	YES	30	47	600	600	8	11	1/3 Left	Malleolus fractures	Unknown Right
201	8043_1	DRV	YES	20	51	0	0	θ	2	100\% No intrusion	Talar fracture	Right
202	8068_1	DRV	YES	31	36	200	0	10	1	1/3 Rioht	-Ankle aprain"	Rioht
203	8062_1	DRV	YES	22	48	100	0	11	12	1/2 Rioht	Malieolus fractures	Lateral Right
204	8068_1	DRV	YES	60	43	0	0	13	12	100\% No intrusion	Catcaneat fracture	Rioht
206	0074_1	DRV	YES	30	65	100	100	11	12	1/2 Rioht	Tibial \& fibula diaphyara fractures	Left
206	-8082_1	DRV	YES	21	45	100	100	13	12	100\% With intrusion	-Ankle aprain ${ }^{\text {- }}$	Left
207	-8083_2	PAS	YES	50	33	0	0	11	12	100\% No intrusion	Ankle fracture	Unknown
208	81161°	DRV	YES	37	70	200	300	20	12	100\% With intrusion	Metataraal fractures	Rioht
	_8116_10	DRV	YES	37	70	200	300	20	12	100\% With intrusion	Tersal bone dialocations	Right
	$8116{ }^{\circ}$	DRV	YES	37	70	200	300	20	12	100\% With intrusion	Toe dislocation	Rioht

Rq: Bold-faced cases represent the 4 ones illustrated in the article.

[^0]: * Number in brackets designates the references at the end of the paper.

