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S imulated car-to-car side impacts , des igned for the analysi s  
of traumatological aspects , involve two sets o f  va riables . 
Predi ctors i nclude exogenous biomechanical factors as well 
as anthropometric variables , such as age . The response i s  
measured a scale o f  injuy scores and i s  thus multi nominal .  

I t  i s  the aim of a s tati stical analysis of such data to 
devi s e  a multinominal response model that explains pos s i ble 
patterns of injury as a function of a sui table set of 
predictor variables . Several approaches for modelling such 
a multinominal response relationship have been proposed i n  
the li terature , among them the Logistic and the Weibul l 
regress ion models . Two ma jor questions in applying such models 
are as follows : What model i s  appropriate and how should 
di f ferent models be compared. Another concern is how the 
qua l i ty of a g iven model should be presented for varying sets 
of predictors . 

I n  this paper we di scuss the f i rs t  question by constructing 
a goodness-of - f i t  test based on bootstrapping f l exibl e ,  non
parametr ic alternatives to a given parametric candidate 
model . Secondly ,  we present several graphical techniques 
that allow relatively simple comparisons of di f ferent models . 

1 .  Modelling the influence of anthropometric and mechani cal 
parameters on trauma i ndi ces : 

The aim of the s tatistica l  analys i s  of simulated car impacts 
is to develop models that al low one to understand how the 
sever i ty of impacts depend on observable i nput variables . 
Typically such i nput variables can be divided into 
two types . The f i rst set of va riables i s  describi ng 
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the test subject ' s  physica l  characteristics , such as 
height or age .  A second set is concerned with the actual 
exper imental setting , and contains such parameters as 
velocity of the impact and acceleration measured at various 
places . These i nput variables determine jointly the response 
variable . The observed response variable is a trauma i ndex 
usually scaled according to some injury scale , e . g .  AIS 
C l 9 80 ) . The AIS trauma index , for example ,  is a di screte 
variable in < 0 , 1 , 2 , 3 , 4 , 5 , 6 ) ,  with the lightest C or non) 
injury indexed by " 0 "  and the severest injury indexed by 11 6 11 • 
The input variables are mostly of continuous nature ,  i . e .  
they can possibly take each value in a certain i nterva l .  

Phrased in terms of statistical methodology we are given a 
di screte regres sion problem , i . e .  di screte response va riables 
C trauma i ndex ) are regressed on various ki nds of predictor 
variables C possibly conti nuous or also di screte ) . (See Bickel 
and Doksum ( 1 9 7 7 ) , Neter and Wasserman C l 9 7 4 ,  Chapter 9 ) ) .  
The aim of thi s  s tatistical problem i s  to construct sui table 
models for explaining the probabi l i ty of a certai n  level 
of trauma i ndex as a function of the given covariables . In 
thi s paper we denote by ( X i ' Y i) , i = 1 ,  • • •  , n ,  the data 
points from such an experiment ; X standing for the vector of 
predi ctor variables C input ) and Y denoting the di screte 
response variable C output vector ) .  Since the response va riable 
is multinominal C i . e .  takes values in a di screte ordered set)  
i t  i s  reasonable to def i ne the regres sion function as the 
probabi l i ty that Y is bigger than some value c .  Hence , we are 
dealing with a set of regres sion functions 

P c (x) = P(Y�c f X=x) , 

where c runs through the di screte set of pos sible response 
values C trauma indices ) .  In determing such functions p one 
would like to have some bas i s  requi rements fulf illed that 
are di rect cons equences of the experimental setup . These are 

C l . l )  Monotonic i ty ,  i . e .  if the input va riables are ordered 
in some natural way then increas i ng the s trength of 
impact or i ncreasi ng age , the probabi l i ty of having 
a trauma index greater than or equa l to c should also 
increase . 

C l . 2 )  Cons istency , i . e .  P c � P c for c 1 � c 2 1 2 

Cons istency means that the curves Pc should be so that the 
probabi l i ty of having trauma i ndex greater than c increases 
if c decreases . 

48 



In the next section we di scus s several multi nominal response 
models . In section 3 we show how nonparametric smoothing 
techniques help i n  selecting a sui table response model .  In 
section 4 we di scus s some graphical methods for enhancing ·the 
summary statistics of a given f i t  when the set of predictor 
variables is var i ed .  In section 5 the application of these 
methods to the Heidelberg side impact data i s  presented . 
Section 6 is  devoted to conclus ions . 

2 .  Multinominal Response Models 

There are two di f ferent approaches to model the dependence of 
the condi tional probabi l i ty Pe < x >  = P C Y7,.</x=x> as a function 
of the covariables x .  The firs t  approach is to assume that 
this function Pc is a member of a speci f  ic class of para
meter ized funct1ons . The s econd approach is called non
parametric si nce the form of Pe is not restricted by any 
requirement except those of C l . l )  and C l . 2 )  above . The para
metric approach has the advantage of easier i nterpretation 
of coef ficients and also of numerical computations , whereas 
the non-parametric approach has the advantage of not being 
bound to any functiona l form. Both should serve each other 
as an alternative and should not be seen as mutua lly exclusive 
models . Well-known parametric models i nclude the Logistic and 
the Prob i t  regression models . The ba sic s tructural assumption 
for both approaches is the same : both are models based on 
linear combi nations C projections ) of the predictor variable 
x ,  i . e .  the function Pc i� model led as 

with a link function G p and parameter ß .  The parametric 
approach consists of fixing the function G e( . )  = G e <olc + . )  
to a certain shape whereas the non-parametric approach does 
not prescribe the form of G 0 • In the fol lowing we jus t  
wr i te G to describe the general form of G e • 

In a Logi t  analysi s one assumes that G i s  of the form of a 
logi stic di stribution function , i . e .  

G < z > = exp ( z M 1 +exp < z > > • 

The functions P e  are determined by the maximum likelihood 
method , i . e .  one maximizes for each c 

111�1 P(Y 1 � c f X1  = x1 ) 
n 

=ll 1=1 C(a c 
c 

+ ß T Xi ) y 1 ( 1 - C( a c + ß T xi ) ( 
l 

Y� = I(Y i � c) . 
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subject to the cons i stency condi tion . In the same way other 
models like the Probi t model wi th G equ.a l  to the s tandard 
normal distribution functiqn can be adapted . Yet another 
shape function is the Weibull di stribution function.  

The non-parametric approach does not fix the shape function 
G, but rather lets it be any smooth function following the 
requirements ( 1 . 1 )  and .( 1 .  2 ) . Given the parameter vector 
ß the link function G i s  determined by a non-parametric 
smoothing technique , such as spl i ne or kerne ! , see Härdle 
< 1 9 8 8 ) . The kerne! smoother G h( z )  at the point 

z = ßT x for data (Z 1 =ßTX1 . Y1 ) 
i s  def ined by 

Ch (z) = n -l I�=l Kh (z-Z 1 )Y 1 /n -l I�=l Kh (z-Z 1 ) 
where Kh ( u )  = h- 1 K < u/h ) i s  a delta function sequence w i th 
bandwidth h and kerne! K ,  where K i s  a conti nuous probabi l i ty 
dens i ty .  The kerne! smoother i s  a consi stent es timate of G i f  
h _,.. 0 a s  the sample s i z e  n tends t o  infinity. The parameter ß 
can be determined i n  various numerical ways , s i nce the function 
G i s  not determined up to scale. One of the possibi l i ties is 
to determine G and ß jointly by minimiz ing the Residual Sum 
of Squares ( RS S )  or other measures of accuracy . Thi s  amounts 
to f i ndi ng G and ß such that 

-1 " n (Y 
_ G(A TX ) ) 2  n "" i=l i "' i 

is minima l .  Thi s  minimi z ation i s  done i teratively by searching 
over al l possible di rections ß ,  that is why this method i s  
called Projection Pursui t Regres sion C PPR) , see Fri edman and 
Stue tz le ( 1 9 8 1 ) . Another method i s  called Average Der ivative 
Estimation ( ADE ) . In ADE estimates of ß are obtained in a 
direct way wi thout involving the link function G.  Thi s  estimate 
of ß i s  def i ned as 

where t denotes · an estimate of the partial derivatives of 
f ,  the densi ty of X. For details see Här dle and S toker ( 1 9 8 8 ) . 
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3 .  Selecting a sui table model 

The task f i nding a suitable model among the many possible 
parametric and non-parametr i c  alternatives involves the 
statistical precis ion of the model as weil as the · numerical 
applicabi l i ty .  I t · is widely · known that the Logistic regres sion 
mode l can be qui te easi ly · f i tted · numer ically ; SAS Supple
mentary User ' s  Guide C l 9 85 ) . Other l i nk functions · G ,  for 
example the Probi t  curve · have · a · simi lar · shape C see · Berkson , 
1951 ) but require more computational e f fort �  Als o the · non
parametric smoothing · method requires a lot more on · compu
tations but has the advantage of not · be i ng · restricted · i n ·  · 
its functional form � I n  particular the symmetry of the · link · 
function that i s · inherent · to the Logi t · model · i s · no · restriction 
for the non-parametric · approac h �  Indeed: the · response of · the 
side impact · experiments is somewhat · asymmetr i c ; as · was · pointed 
out by several people who tried a · skewed · Weibull · distribution 
as a link function · G. The pr ice one has : to pay · though · for 
this addi tional f eature is that the: numbe r · of · parameters ; 
and thus the numerical cost and prec i sion of the algor i thm , 
increase . 

S ince the non-parametric alternative · al lows fi tting · in a much 
wider class of functions i t · s eems reasonable · that · i t · can · be 
used · i n  a formal test of · goodness of : f i t · of · low dimens ional 
parametr i c  models � To s impl ify · matters · let · us consider · only 
a binominal response model · of · one · dimensiona1 · x · variables ; 
i . e .  Y takes · the · values O or 1 • . the proposed · test is based on 
smoothing the response · variables · of · a · given · parametric f i t  
p C x : ß) . One def i nes the kernel smoother on data c x 1 ,  Y i ) as 

A - 1  n - 1  n X ) p(X j ) = n Ii=l Kh(X j-X 1 )Y 1/n Ii=l Kh(X j- i • 

The smoothing parameter h can be determined · by crossvali
da tion , see Härdle ( 1 9 8 8 ) . The test i s  described formally 
as follows . 

1 .  F i t  a candidate parametri c  model C p  C x : ß > 

2 .  S imulate new observations C X *i Y *{ from this mod�l by using 
a pseudo random number genera�or based on p C x : ß )  
C bootstrapping ) .  

3 .  Determine for each X i that has · been · observed · the · empirical 
5 % quantiles of a kernel smoother of the s imulated data . 

4 .  Center these 5 % bands around the assumed parametric 
candidate model . 

5 .  Check whether the kernel smoother based on the or ig i nal 
data lies i n  between these bands . 
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Figure 3 . 1  

Another method i s  based on compari ng the likelihood for 
di f ferent models with a bias correction for dif ferent 
number of parameters . Thi s  i s  related to ideas of Akaike 
( 1 9 7 7 )  and works as follows . One compares the Log-Likelihoods 
under both models , i . e .  

Based on the limi ting chi -square di s tribution of twice the 
like lihood ratio statistic one cannont distingui s h  the two 
models i f  the magni tude of the above di f ference i s  less than 
0 . 5 .  

4 .  Comparing simi lar mode ls 

I f  the above models are run for several types and s ets of 
input variables i t  is important to compare the output of the 
di f ferent f i ts .  In the s tudy of the Hei de lberg data we found 
the following , mostly graphically oriented tools very 
convenient . 

Concomitant pairs 

Concomitant pairs are defi ned through all pairs of observa tions 
with di f ferent response values . Now count all pairs of obser
vations where the current model f i t  predicted a higher 
probab i l i ty for the higher Y-va lue . Then compute the share 
of these pa i rs among all pairs with di fferent Y-va lues .  
Certainly if this share of concomitant pairs i s  close to 1 
the model f i ts qui te wel l .  The procedure LOGIST of the SAS 
system computes this number on request . 

Predict ion Table 

The predi ction table is s i mply a f requency table of the 
observed trauma indices versus the predicted trauma indi ces . 
The number of correctly predicted response variables i s  the 
clas s i f i cation rate . Thi s  number lies between O and 1 .  
Certainly a number close to one i s  des i rable . It is qui te 
intu i tive that the empirica lly determined clas s i f i cation 
rates are over optimistic s i nce the data is used to determine 
the model as well as to j udge i t .  An unbiased es timate of the 
clas s i f i cation rate can be obtained by , for example , cross 
va lidation . In this method the whole ana lys i s  is performed n 
times on n subsamples each of s i z e  n-1 C leave one out method ) .  
The left out observa tion i s  predicted by the model 
constructed from the rest of the observations . Thi s  leads to 
an unbiased estimate of the predi ction error , as was shown 
by S tone ( 1 9 7 4 ) . 

52 

-·-··--· 



NONPA P.A.\IETRIC lOCISTIC RECRESSIOS BOO TSTIUP 
NSIJI = 500 

•i.: · ·� • ·- ••&• ··�,---·-·-.... 
- ...,..._ .. J , , 

„--� 

" , 

.. 

.. , 

·'·' 

.. 

... 

.. 

••• 

••• 

.. , 

.. 

.. 

.. 

.. 
„. 

„ .  

," 
I 

' 
' , 

, 
I 

I 
I 

' ,' I I I I I I I 
., I 

' I 
', ,' 

_, 

,/ 

_, " 
," 

' 
I 

,.... ... , ,' I .._ _ _ _ _  _, I I 
I 

,„ I I \.J / " 
I 

' 
I 

„1 a) 

I 

1 00  

-: 

I 
I 

,, 
,, 

'" ' 1 .0  

• 

," I I I 
, 

"" l lO  100 llO n: 110 

X 

• c.:.. c :-c : : � :s-..... ........--·----------
/' 

,"-
' 

" 
I 

„, 

/ I I 
1 

' 
1 I I 

I I 
, , \ I 

\ I 1 

\ ,./ 
\ 1 
\ , \ 1 

,_, 

I , 
1-- I 
, __ , I , I 

""'"'' / I \ I 
I
I \ I \/ , I 

r, I 
,..._1 V 

l 
/ 

/ / 

b) 

··-'-l;:a=a��-�-�� .... .&IL...i„--..-..11111..,&--.... ----...---..... ------
„ •• 111 .„ .„ .• „ 

)t 
'" ,.. 

Fiq. 3 . 1  Nonparametric loqiatic distribution of the injury 

aeverity (y • 1 for AIS � 3 and Y • 0 for AIS *' 3 )  over 

the TTI with 5 \ . confidencebands for 500 simulations 

according to the bootatrap method. 
a) bandwidth h • 1 3  

b )  bandwidth h • 9 
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The enhanced h i stogram of predi ction errors 

Thi s is a histogram of the observed d i f ferences be tween the 
observed trauma i ndex and the predicted index where large 
indices are marked in a special way .  The procedure is as 
follows . 1 .  Compute all the dif ferences predicted response -
observed response . 2 .  Index all large trauma values ( for the 
AI S values ( predic ted or observed) greater than 4 .  
3 .  Draw a hi stogram of these di f ferences where the big trauma 
indices get marked by us i ng special symbol . 

I n  figure 4 . 1  we show an enhanced h i stogram for the TTI 
( Eppinger et al . ,  1 9 8 4 )  as a predictor variable for the 
TOAIS ( thorax AIS ) . 

Figure 4 . 1  

This Thoracic Trauma Index i s  def i ned through 

TTI = 1 . 4  AGE + 0 . 5  FORCE . 

One sees f rom this enhanced histogram of predi ction erros 
that the TTI leans toward over es timating the true responses . 
Indeed , the histogram i s  skewed to the right . There are 1 1  
observations i nvolving the thorax A I S  value o f  4 .  Two of these 
eleven observations have predi ction error zero. One observation 
has been predicted to have AIS value 4 ,  but really had value 
3 < prediction error 2 to the right i n  the histogram) , and 
eight observations had AIS value 4 but were wrongly clas s i 
f i ed a s  3 .  One should therefore search for a model that more 
fai thfully predi cts the high AIS values . 

A di stortion measure 

As a measure of di stortion of current f i t  we would like to 
propose two subintegrals of the above histogram. Thi s  pa ir 
of numbers tells f irst whether the f i t  is skew , i . e .  has a 
bias towards over- or underestimating the true response 
value . Secondly the s i ze of the subintegrals relative to 
the sample s i ze immedi ately gives a goodness of f i t  criterion . 
The first subi ntegral just counts the number of posi tive 
exceedances ( to the r ig ht of the column zero in figure 4 . 1 ) . 
The second subi ntegral counts the number of negative 
exceedances , in this case - 8 .  Thi s  together gives the 
di stortion mesure ( -8 ,  3 5 ) which describes in a very condensed 
form the skewnes s  of the predi ction and how much the true 
values are missed by the above model .  
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The Isoquants 

The plot of isoquants is des igned for two dimens ional 
predictor variables and shows in a graphical way what 
trauma i ndices are to be expected given all possible 
cornbi nations of covariables . In f igure 4 . 2  we s how the 
predicted thorax AIS classes as a function of AGE and 
FORCE, as def i ned in Ka llieri s , Mattern and Härdle ( 1 9 86 ) . 

Figure 4 . 2  

The region i ndicated by the letter A would be the region of 
( AGE , FORCE ) cornbinations where AIS = 0 would be predi cted . 
The region with AIS = 3 i s  shown by D and the highes t AIS 
value of 4 is marked by an E. Overlaid in this plane are 
the original data values < 0 , 1 , 2 , 3 , 4 ) . Thi s  plot allows s imple 
compari son of di f ferent f i ts by simply studyi ng the regions 
that determine the AIS value s .  Given for instance the age of 
30 one can easily determine by ra i s i ng the values of FORCE 
at what points of FORCE the prediction to higher AIS classes 
would happen . ( FORCE level 1 4 0  jurng to predicted AIS 3 ,  
FORCE level 2 5 0  jurnp to predi cted AIS 4 ) . 

5 .  Appl ication to the Heidelberg data 

Only a few research onsets are sui ted to determine the 
connection beween mechanical i n f luence and injury seve r i ty 
when measured in AIS degrees . There are real accident analyses 
on one hand and cras h tests w i th post mortem human subjects 
( PMHS ) on the other band . Both research onsets are not idea l .  

The advantage of crash tests with PMHS is , e . g . , that by 
defined condi tions of the accident sever i ty ,  loads acting 
on the body can be measured in physi ca l  magn i tudes l ike 
acceleration at r ibs , sternurn, vertebral bodies and head . Thi s  
i s  not possible in the real accident analyses . D i f ferences 
of the injury limits aga i nst the living human be ings are 
criticized as a disadvantage of the crash tests with 
PMHS . The load values measured on the bodi es of the PMHS 
however , are indi spensable bas i s  data for the construction 
of durnrnies , if these durnrnies should be qualif ied for the 
injury predi ction in crash tests . 

At the Ins t i tute for Legal Medi c i ne of the Univers i ty of 
Heidelberg crash tests were conducted with PMHS and durnrnies 
for many years to investigate this research concep t .  As 
follows , the investigation of lateral collis ions should 
represent which connections ex ist between loading parameters 
at the body of the PMHS , anthropometric data and i n j ury 
sever i ty and how these connections can be used for i n j ury 
predi ction by ut i l i z ation of the s tatistical methods descr ibed 
above . Bas i s  of the connection analyses are 5 8  9 0-degree 
lateral colli sions . In these collisions · PMHS have been loaded 
in near side posi tion in the impacted/standing vehicl e .  
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Fig . 4 . 2 Isoquantplot for the illustration of the prediction 

results of the logistic regression from AGE and FORCE . 

Zone A :  prediction of TOAIS • 0 

Zone B :  prediction of TOAIS • 3 
Zone E :  prediction of TOAIS • 4 

Numbers in the zones :  observed thorax-injury deqrees 

FORCE • 1 /2 (accel .max . 4th rib impacted side + max • .  

result . accel . Th 1 2 )  X bocfymass / 75 
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The crash tests have been conducted at impact veloc i ties 
of 40 , 45 , 50 and 60 km/h C Ka l lieris et a l . , 1 9 8 7 ) . In the 
PMHS 22 acceleration values at head , thorax , spinal column 
and pelvi s  have been recorded for each tes t .  The inj ur ies 
of the PMHS have been scaled according to AIS 8 0 .  It was 
seen in the statistical analyses that the injury levels 
could be most ef fectively predicted by the method of 
logi stic regres sion . In the 90 degree lateral collis ions 
the body i n j ury severity C TAAIS ) was generally leading 
and determined the maximum injury sever i ty ( MAIS ) . Therefore , 
the prediction of the body injury severity for r ight 
side lateral colli sions is presented here as an example . 
Among the 2 2  as maximum and 3 ms values recorded accelerations 
the fol lowing proved to be the best predi ctor s :  

1 .  Acceleration ( 3  ms value > i n  x-direction a t  lower s ternum 
( BUX 3 )  ( g )  ; 

2 .  acceleration ( 3  ms value ) at the 12th thoraci c  vertebra 
in y-di rection CT1 2Y3 ) ( g ) ; 

The further improvement of the injury predi ction has been 
reached in considering the Body Mass C BMAS S )  C kg >  as 
covariabl e .  With these covariable combination , the logi s t i c  
model estimated the following parameters for the i n j ury 
index Z: 

Z = 0 . 1 5 BMASS + 0 . 0 8 Tl2Y3 + 0 . 0 6 BUX 3 . 

The probabi l i ty curves for TAAIS rankings 0 , 4  and 5 are s hown 
in f igure 5 . 1 ,  for impacts from the right . The three tests 
with TAAIS 2 and 3 i n  the test seri es were not cons idered. 

F igure 5 . 1  

Below a z value of 1 8 . 3 ,  the envelope of the AIS probabi l i ty 
curves indi cates a high probabi l i ty to be uninjur ed ( the 
highest probab i l i ty is below z = 1 8 ) . Between z = 1 8 . 3 and 
Z = 2 0 , a TAAIS of 4 is largely to be expected and above 
Z = 20 the probabi l i ty for TAAIS 5 of about 45 % increases 
continuously to 1 0 0  % ( at z =  25 ) .  The enhanced TAAIS 
di f ference histogram C see s ection 4 )  in f igure 5 . 2  shows 
that the above mentioned covariable combi nation as correctly 
predi cts 59 % of the cases . The model predi cts the TAAIS 
in 1 9  % too high and in 15 % a level too low ; each one time ,  
the model underestimated the observed i n j ury for two and 
4 AIS degrees . 

Figure 5 . 2  
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6 .  Conclus ions 

We have presented s everal multinominal response models of 
parametric and non-parametric nature .  A way of comparing 
these mode ls and decidi ng which one is more appropri ate 
than others is g iven by consider ing non-parametric 
alternatives in the construction of a simulation band . 
This simulation band technique ( section 3 )  lead for the 
Heidelberg data to the conclus ion tht the Logistic response 
model is appropriate for · the analysis of · car-to-car s ide 
impacts . Compar i ng the Likelihoods of the Logistic and the 
Weibull link functions we found no better f i t  for the We i
bull model , see Kal lieris , Mattern and Härdle ( 1 9 86 ) . We 
fur thermore presented a variety of graphical techniques 
which are of great as s i s tance when looking for sui table 
predictor var i ables X ,  see section 4 .  U s i ng these techniques 
we found for example that the Log i s t i c  model us ing the trauma 
index 

Z = 0 . 15 BMASS + 0 . 0 8 Tl2Y3 + 0 . 0 6 BUX3 

had good predi ction properties for the TAAIS ,  see section 5 .  
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