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1 .  INTRODUCTION 

Data used in empirical research and, in particular, in traffic and 
accident research, very frequently do not have the (quantitative) 
interval scale format whlch is required by most statistical methods. 
Instead, they are merely ordinal or nominal scaled: measurements and 
observations are qualitative (e.g. age in age groups; sex; type of vehicle; 
accident severity killed, seriously injured, slightly injured) .  The 
categories of such a nominal scaled variable only stand in the relation 
"not equal to" .  This means that we cannot make any statements about 
rank orderings or · distances and that the range of mathematical 
operations allowed with such data is different from that available for 
quantitative data. Thus there is an obvious need for analysis methods 
which are suited to such data. A further problem constantly confronted 
in accident research ls "complexity":  1.e. problems are not simple enough 
to permit an explanation of some variable y in terms of one other 
variable x. 

Analysis procedures for the relations between nominal scaled variables 
usually rely on contingency tables. But conclusions which were valid for 
cross tabulations of two variables often have to be considerably modified 
as soon as a third (control) variable is introduced. We then have to face 
the question: if we want control by a third variable, why not introduce 
a fourth for even more control, etc .?  Why not make a multivariate 
analysis using all the variables that are considered to be theoretically 
relevant. 

The subject of this contribution are statistical methods on the basis of 
loglinear and logit models which offer the possibility of multivariate 
analyses while depending only on reallstic assumptions about the scale 
types of the variables.  
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2.  THE PRINCIPLE OF LOGLINEAR MODELS 

First, we wlll illustrate the principle of loglinear models wlth the 
example of a simple 2 x 2 contingency table. 

Figure 1 :  Schema o f  a 2 x 2 contlngency table 
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The loglinear model for the example of Flgure 1 ls: 

1')1 J = lnµ1 J = ßo + ßA 1 + ß8 J + ßA B 1 J 
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i , j  = 1 , 2  

The logarithm of the expected cell frequency µtJ of each of the cells yu 
in the 2 x 2 table is made up additively of a general effect ßo (often 
called the "grand mean") ,  the main effects ßA1 and ß8J, and an 
interaction effect ßAB1J. 

The cell frequencies of the contlngency table are thus taken to be 
dependent on the underlying effects of the variables. The statistical 
model is based on a multlplicative connectlon of these effects, but lt can 
be transformed lnto an additive, so-called "loglinear" model by taking 
the logarithms. The assumptlon of a multiplicative connectlon of the 
effects of the variables is not only statistlcally justlfied but can also be 
substantlated by empirical considerations: the frequency of accidents, for 
example, will change depending on the age of trafflc particlpants by a 
certain proportion and not by a certain fixed amount. This is equivalent 
to multlplicatlon by a corresponding factor. 

The effects ßo, . . .  ,ßAB1J can be explained very clearly. If the cell 
frequencies y1J of the 2 x 2 table are the same (equal dlstribution),  thls 
will be expressed in the general effect ßo. The effects ßA1 and ß8 J occur 
when there is no equal distribution. Differences in the rows of the table 
result from the effect of the variable A, differences in the columns can 
be traced back to that of the variable B. The interaction effect ßA8u 
occurs in addition to the main effects ßA1 and ß8J lf A and B are 
stochastlcally dependent, it expresses the jolnt lnfluence of A and B .  If 
the two variables are stochastically independent, ßA81J will be zero. 
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3 .  THE PRINCIPLE OF LOGIT MODELS 

In Section 2 loglinear models were lntroduced. They are characterized by 
treating the absolute frequencles of a contingency table as Independent 
variables. 
Loglt models, instead, are characterized by using the proportion of the 
categories of a dichotomous variable. An example may be the number of 
killed pedestrians in relation to the number of all injured pedestrlans. 

Figure 2 :  Schema of a 3 x 2 x 2 contingency table 

Cl C 2  

Bl Y1  1 1  Y1 1 2  
Al 

B2 Y1 2 1  Y1 2 2  

Bl Y2 1 1 Y2 1 2 
A2 

B 2  Y2 2 1 y2 2 2 

Bl Ya 1 1  Ya 1 2 
A3 

B2 Ya 2 1  Ya 2 2 

In the analysls of the three-dimensional table of Figure 2 the value of 
C=Ci/C2 is to be treated in dependence on the variables A and B .  
This is  achleved by calculating, for each AtBJ , the value 

µ i J 
r) 1 j = ln 

1 - µ i  j 

µ 1 j 1 
where µ i J = = 

µ i J 1 +µ 1 J 2  

Y1 J 1  
ls the expected value of y1 J = 

Nt J 

The linear predlctor r)tJ ls called loglt, lt is easily interpretable as the 
logarlthm of the quotient of the probabllities of C = C1 and C = C2. 
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If 111J is the predictor for the cell frequencies, we obtain a linear model 
for the differences between the logarithms of the probabilities 

ln µ1 J - ln ( 1 - µ1 J ) = ßo + ßA 1 + ß8 J + ßA 8 1 J 

A model is thus defined by: 

i = l , . . .  , 3  
j = 1 , 2  

1 .  An observed dependent variable (here: C), in the case of logllnear 
models the absolute cell frequencies. 

2. A linear model constructed from the explanatory variables, 
predicting the vector 11 .  

3 .  The probability distribution o f  the variable C .  
4.  The link function (e.g. logit) which connects the linear predictor 11 

with the expected value µ .  

The type of the model (e .g .  loglinear or logit) is  determined by the 
choice of a particular link function. 

4. ASSESSMENT OF THE GOODNESS OF FiT 

For evaluating any model, we have to determine to which degree the 
variables contained in the model (or in the contingency table) actually 
explain the variation in the empirical data. 

In principle two relevant measures can be distinguished (cf. Arminger & 
Küsters, 1 98 6 ) :  
First, we can determlne that proportion of the deviance in the 
aggregated data contained in the contingency table which is explained by 
a model. (PEDAD = Proportion of Explained Deviance on Aggregate Data). 
This is the conventlonal method to assess the goodness of fit between a 
model and the empirlcal flndings. 
But what is frequently overlooked is that aggregation leads to a loss of 
information. In addition to PEDAD we therefore have to determine which 
proportion of the variation of the original data (later aggregated in the 
table) is explained by the independent variables and their interactions 
(PED = Proportion of Explained Deviance ) .  Only this measure is actually 
comparable wlth the R2 known from regression and correlatlon analyses. 
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5. A BINOMIAL LOGIT MODEL (EXAMPLE) 

The following example should serve as an illustration of how data can be 
analysed on the basis of loglinear or logit models. 
The data used in thls example are taken from a set of accident data of 
the years 1 985/86 which were supplemented by vehicle-related data, 
altogether containing 1 4 0  variables. These data exist for the years since 
1 98 0  and were made available in the framework of a joint project 
including the German Federal Highway Research Institute (BASt), the 
Federal Office for Motor Traffic (Flensburg), the State Authority for Data 
Processing and Statistics of North-Rhine Westphalia (Bock et.al.,  1 986).  

The dependent variable considered in the following analysis is the 
proportion of the number of killed and seriously injured drivers to the 
number of all killed and injured drivers. This is a measure for the 
average accident severity which is frequently used in accident research. 
In this example, only accidents between two passenger cars were 
considered. 

Independent variables included: 

A a Age of driver 
A l  under 25 years 
A2 25 to under 60 years 
A3 60 years and more 

L a Location 
L l  inslde urban areas 
L2 outside urban areas wlthout motorways 

W a Unladen welght of the car 
W l  under 800 kg 
W2 800 kg to under 1 200 kg 
W3 1 200 kg and over 

The first category of each of the independent variables A, L, W is used 
as the basic category in the calculation. The remainlng categories of the 
variables are put into proportion to the baslc category (cf. Ernst & 
Brühning, 1 98 6 ) .  
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5.1  INTERPRETATION OF' THE MODEL 

Table 1 :  Introduction o f  the main effects into the logit model 

Mo- Introduced Deviances1 Degrees of reduced devia- explain-
del ef fect f reedam nces to basic ed devi-

(DF) model (Mod.l) ances 2 

1 GM 957 , 3  17 - -

2 GM +  A 807 , 7  15 149 , 6  15, 6% 

3 GM +  L 150 , 2  16 807 , 1  84 , 3% 

4 GM +  W 950 , 5  15 6 , 8  0 , 7% 

5 GM+A+L+W 8 , 3  12 949 , 0  99 , 1% 

1 The figures specify the deviance of the expected values from . the 
actually observed frequencies. If the frequencies predicted by the 
model only deviate randomly from the observed values, the deviances 
will be in asymptotic X2-distributlon with the degrees of freedom 
given in the table. 

2 If the deviance calculated with Models 2 to 5 is put into relation to 
the deviance glven by Model 1 (deviance of the basic model) ,  we get 
the proportion of deviance explained by the parameters of each model. 

Model 1 which only uses the GM (= grand mean, regresslon constant) for 
the estimation of the cell frequencies represents the hypothesis that the 
variables A, L, W do not have any effect on the proportion of killed and 
seriously injured drivers. As the deviances of the Models 2 to 4 show, 
the explanatory contributions of the individual variables are of highly 
different value. A reduction of deviance by 84.3% ls effected just by the 
variable "location" (L). The effects of the variables "age of driver" (A) 
and, in particular, "unladen weight" (W) are clearly smaller with 15 .6% 
and 0 .  7%,  respectively. All  maln effects taken together in one model 
(Model 5, the "maln effects model") reduce the deviance by 99. 1%. 

An expansion of the maln effects model by the interactions of the l st 
level (interactions between two variables) and of. the 2nd level 
(interactions between three variables) does not provide more explanatory 
power because all the interactions of the lst and 2nd level are not 
significantly different from zero. 

The main effects model contains the variable "unladen weight" with 3 
categories. The category W2 (800 kg to under 1 200 kg) however does not 
result ln an estlmate that ls slgnificantly different from that of the 
basic category Wl (less than 800 kg) . W2 will therefore not be treated as 
a separate main effect in the optimal model which will include only those 
main effects which are different from zero with an error probabllity of 
a = 0.05.  
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Table 2 :  Estimation o f  the parameters and the standard deviation for 
the optimal model: A + L + W3 

Deviance DF 

9 . 3 6 6  1 3  

ESTIMATE S . E .  Parameter 

1 -1 . 6 3 9  0 . 0 3 2 1 1  GM 

2 -0 . 3 5 9 3  0 . 0 3 7 1 7  A2 

3 0 . 1 6 6 8  0 . 0 6 6 4 3  A3 

4 0 . 9 8 4 4  0 . 0 3 4 8 5  L2 

5 -0 . 1 0 5 8  0 . 04 8 7 6  W3 

The interpretation of the model parameters (effects) 

The model parameters and thelr estimates glven in Table 2 deflne the 
optimal model. Slnce the maln effect "age of the driver" (A) has more 
than two categories (including the basic category),  the optimal model 
contains 5 parameters. 

The model parameters included in the optimal model are easily 
in terpretable: 

Negative values of "ESTIMATE" mean that the proportion of kllled and 
injured drivers will decrease when the parameters in question are 
present, positive values in turn mean that the proportion will increase. 
The largest positive main effect is caused by the parameter L2 (outside 
urban areas): there ls a relatively strong increase of the proportion of 
killed and lnjured drivers outside urban areas. 

The slgns of the parameters A2 (middle age group) and A3 Cold drivers) 
show dlrectly that the proportion of killed and seriously injured drlvers 
of the middle age group is smaller than that of young drivers while that 
of old drivers ls !arger (Al is the basic category, l .e .  the parameter of 
this category has the value zero and is between the values of A2 and 
A3). 

The effect of the parameter W3 (unladen weight over 1 200 kg) ls 
relatlvely small (negative).  l .e .  the unladen weight of the car has a 
llttle effect on the proportion of kllled and serlously lnjured drlvers (Wl 
and W2 form the basic category). 
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The simple model shown in Table 2 illustrates how the logit model can 
describe strong and weak dependencies; non-significant parameters can 
be easily detected and excluded from the further development of an 
optimal model. 
This model explains 99.0% of the deviance of the basic model (PEDAD ) ;  
but the proportion o f  explained variation in the individual data (PED) is 
only 4.4%. 

5.2 EXPANSION OF THE LOGIT MODEL WITH THE INDEPENDENT VARIABLE 
"ACCIDENT CAUSATION" 

In empirical research we always have to ask the question whether the 
relevant influences have been taken into account in an analysis or 
whether some important intervening variables have been overlooked. The 
analysis described above using loglinear or logit models allows an easy 
way of expanding the model by further variables. 

Let us check whether the average accident severity is statistically 
correlated with the fact whether the driver in question is responsible for 
the accident or not (according to the opinion of the police) .  For this, we 
expanded the multivariate analysis presented in Section 5 . 1  by the 
variable "accident causatlon": 

C ;a Accldent causation 
C l  driver responsible for the accident 
C2 drlver not responsible for the accident 

Additional use of thls dichotomous variable doubles the number of cells 
in the data matrix of the logit model. This will find an expression in the 
number of degrees of freedom as well as in the values for deviance. The 
number of degrees of freedom in the basic model is now DF = 1 5, the 
deviance in the basic model is increased to 1 5 1 9 .  

The development o f  the optimal model is performed analogously to Section 
6 . 1 :  there will be no detailed description of this procedure here because 
of reasons of time and space. 
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Table 3 :  Estimation of the parameters and their standard deviations 
f or the optimal model: C + L + A2 + C2.L2 

Deviance DF 

25 . 6 4 3 1  

ESTIMATE S . E .  Parameter 

1 -1 . 1 7 5  0 . 03 6 9 5  GM 

2 -0 . 9 3 6 6  0 . 0 4 9 1 0  C 2  

3 0 . 8 5 4 5  0 . 0 4 9 4 1  L2 

4 -0 . 2 6 6 9  0 . 0 3 5 6 6  A2 

5 -0 . 2 2 4 3  0 . 07 0 57 C2 . L2 

The model parameters and their estimates given in Table 3 again define 
the optimal model. 

The optimal model includes 5 parameters: 
The variable "unladen weight" (W) did not yield estimates significantly 
different from zero, neither for the categories of the main effect nor for 
the interaction effects; it is therefore no more explicitly included in the 
optimal model. 
The category A3 of the variable "age of the driver" also did not have an 
estimate significantly different from zero, lt will be collapsed with the 
category A l  (young drivers) in the optimal model. 

In addition to the three main effects (C2, L2, A2),  the optimal model 
includes one interaction of the l st level (C2.L2 ) .  

The outstanding influence i n  this model i s  not any more exerted by the 
location parameter L2; the strongest maln effect is to be found with the 
parameter C2 ( 'driver not responsible for the accident' ) .  Accordingly high 
is the influence of this variable on the proportion of killed and seriously 
injured drivers. The average accldent severlty is therefore considerably 
lower for drlvers not accused by the pollce. 

For the case that C2 and L2 are both present, the model formula also 
contains the (slgnlficant) interaction effect C2.L2 wlth positive value 
(0.2243 ) .  This constellation (C2.L2) leads to an average accident severity 
which is higher by the value of C2.L2 than that which would be 
calculated 1f just C2 and L2 were included in the model formula. This 
fact can be interpreted as follows: the incllnation of innocent drivers to 
indicate slight injuries to the police is smaller in the case of accidents 
outside urban areas than lt is in accidents inslde urban areas. 
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The optimal model allows to give estimates of the expected values of the 
proportion of killed and seriously injured drivers for any cell of the data 
matrix. Let us note that, in additlon to the main effects, for certain 
variable combinations the interaction effects of the optimal model will 
enter the calculation. 

Table 4: Proportion of killed and seriously injured drivers in relation 
to all killed and injured drivers in accidents between two 
cars and certain selected variable constellations 

No . Variable c onstell ation Propor-
c A L w1 tion 

1 1 1 1 1 2 3 , 6% 

2 2 1 1 1 1 0 , 8% 

3 2 2 1 1 8 , 5% 

4 1 2 1 1 1 9 , 1% 

5 1 1 2 1 4 2 , 1% 

6 2 1 2 1 2 6 , 3% 

7 2 2 2 1 2 1 , 4% 

t Wl lil W2 ;a W3 

On the assumption that the basic category holds for each of the 
parameters contained in the model, the expected value of the proportion 
of killed and seriously injured drivers is 23.6% (Table 4 ,  No. l ) .  
If the driver is not responsible for the accident (C2) and all other 
variables in the model have the basic category, there is an expected 
value of 10 .8% (No.2) .  
The lowest expected accident severity is  calculated for "drivers not 
responsible for the accident" of the middle age group (A2) with 8 .5% 
(No.3) .  The expected value for this age group is higher by more than 
10% if the driver is responsible for the accident, viz. 1 9 .2% (No . 4 ) .  
The highest expected value estimated b y  the model for the proportion of 
killed and injured drivers is 4 2 . 1  % (No.5:  outside urban areas and all 
other variables = basic category) .  In that constellation, "drivers 
responsible for the accident" have the corresponding expected value 
26.3% (No.6) .  

The examples show that logit models allow to  calculate an .expected 
value for all the variable combinations included in the multlvariate 
analysis. 

The expected values deviate from the percentages in a multi-dimensional 
contlngency table because all effects contained in the optimal model as 
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well as those excluded from the model development implicitly enter the 
calculation of an expected value. However only those parameters that are 
statistically significant enter the actual model calculation. 

The parameters contained in the model explain 98.3% of the deviance of 
the basic model (PEDAD), but the proportion of explained variation in 
the individual data (PED) is only 6.9%.  There is a remainlng varlation of 
93. 1 % whlch results from influences other than those explicitly contalned 
in the model. Therefore lt is advlsable to use more variables in the 
analysis if we want to represent reality in an adequate way wlth the 
aim of making predictions for individual cases. 

6. SUMMARY 

The analysis of multivariate dependencies on the basls of logit models 
allows complex results of a quality which cannot be achieved by the 
conventional analysis of multidimensional contingency tables. The reason 
for this is that all effects lncluded in the optimal model as well as 
those originally excluded from the model development enter the 
calculation of expected values. The model calculatlon itself is only based 
on statistically significant parameters. 

The example presented above was only meant as an explanation of the 
methodological facts. But nevertheless we detected a fact that is 
frequently overlooked: If we use the proportlon of drivers with severe 
accident consequences related to the number of all killed and lnjured 
drlvers as a measure of the average accldent severity, the result will 
depend crucially on whether the particular driver is responsible for the 
accident or not. There is a simple reason for thls: drivers that did not 
cause an accident will be more inclined to report slight lnjuries to the 
police than those that caused the accident. 
The degree of this dlfference depends considerably on the definition of 
injury1 and the methods of data collection in a country. But the general 
result ls valid also for other countrles. 

Loglinear and loglt models are useful in controlllng thls and other 
dlstorting variables. 

1The definltions used in Germany: 
Serlously injured Q person injured in a traffic accident who were in 

hospltal for stationary treatment 
Slightly injured a all others injured in an accident who dld not 

receive stationary treatment 
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