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The Transport and Raad Research Laboratory has carried out a 
large number of s ide impact tests in order to gain a better 
understanding of s ide impact inj ury mechanisms and as part of a 
programme to develop the European t e s t  procedure . Some 
comparison tests have also been made using the barrier proposed 
for the US test procedure . In parallel with these tests , a series 
of quasi-static crush tests has been carried out us ing one of the 
types of car studied in the full s cale test series . A suite of 
computer s imulation prograrns has also been developed which is 
being upgraded in the light of the test results . 

In the analysis of the experimental data , the effects of vehicle 
size , structural characteristics and door padding have been 
studied , along with the effects of different bul let vehicle 
characteristics . Some of the results have revealed mis conceptions 
in some comrnonly held 1deas , demonstrating the complexity of the 
s ide impact problem . In particular , it appears that the overall 
probabil ity of injury is directly related neither to overall 
structural stif fnes s  nor to the f inal extent of intrus ion . Much 
more important i s  the way in which the stif fnesses of dif ferent 
parts of the s ide structure relate to one another . 

In both the experimental tests and the computer s imulations a 
number of different injury criteria have been compared . The 
results suggest that multiple performance criteria may wel l  give 
a better prediction of injury to the thorax . The analyses 
indicate that thoracic loading may be inf luenced by pelvic motion 
but the extent of this has not yet been quantif ied suf f iciently 
to relate to human performance . 

l . INTRODUCTION 

For some years , TRRL has been carrying out research on s ide 
impact accidents in order to gain a better understanding of the 
mechanisms of injury and so be able to draw up guidelines for 
improvements to car design . Such research is an essential part 
of formulating an effective s ide impact test procedure . The 
programrne of research has also involved the j oint development of 
the EUROSIO anthropometric dumrny along with its instrumentation 
( 1 )  and the EEVC Mobile Oeformable Barrier ( MOB ) face ( 2 ) . Much 
of the research has to be based on full scale impact teste . 

In parallel with these tests , a suite of computer simulation 
programs have been written ( 3 ,  4 )  which attempt to model the 
thorax and pelvis of a EUROSID dumrny seated in a car which is 
impacted by such obj ects as the EEVC MOB face or a typical car 

345 



front . In conj unction with the impact testing these programs 
have helped to provide understanding o f  the dynarnic interactions 
which occur in accidents . Howeve r ,  comparison of the s imulation 
output with test data has revealed some deficiencies due to the 
p r o g r a m s  being b a s ed on over s imp l i f i ed concept s . More 
sophisticated programs are currently under development which use 
data obtained from quasi- static crush tests on a small car . 

Because of their frequency in s ide impacts , injuries to the 
thorax are emphas ised in this paper . In the research prograrnrne , 
other . parts of the human body are also being studied . 

Analysis of the output from this research has cast doubt on a 
nurnber o f  the currently accepted ideas about the behaviour of 
cars and how their occupants are inj ured in s ide impacts . It i s  
important that the factors inf luencing inj ury are understood and 
taken into account to ensure that the test procedure leads to the 
design of safer cars , rather than cars which s imply pass the 
test . 

Th i s  paper outlines the present state of the TRRL test 
prograrnrne , and describes some of the factors which appear to be 
important . It concludes by describing our current understanding 
of the vehicle des ign problem and relates it to the more 
s o p h i s t i c ated computer model being deve loped . Although 
qualitative in nature , the discuss ion in this paper is based on 
data obtained from f u l l  scale crash tests and accident 
investigation as wel l  as computer s imulation . 

2 .  TRRL TEST PROGRAMME 

2 . 1  Full Scale Impact Tests 

Over the past two years , TRRL has carried out about thirty full 
scale impact tests on a range of standard and modi f ied cars . The 
maj ority of the tests were carried out to the proposed European 
s ide impact test procedure ( 2 ) ,  us ing the EUROSID durnrny and the 
EEVC MDB face . Other tests have used either the NHTSA MDB face 
( 5 )  or a production car as the bullet vehicle . These tests have 
been used to check the repeatability of EUROS ID and the EEVC MDB 
face and the ability of the test procedure to detect cars with 
improved protection . They also contributed to the development of 
the TRRL Experimental Safety Car ESV87 ( 4 )  and have provided much 
information about the inf luence of car design on reduction of 
injuries as indicated by measurements taken from the EUROSID 
durnrny . 

A nurnber of current production cars o f  different sizes and mas s  
have been tested along with cars modified in a nuinber o f  ways . In 
some cases the modif ications have taken quite extreme forms to 
study the ef fect o f  a ma j or reduction in intrus ion or f i l l ing the 
entire space between the durnrny and the door with padding . 
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By f itting a thick steel sheet on the outside of the car it was 
poss ible virtual ly to el iminate intrusion ( Fig 1 ) . However, this 
alone was insuff icient to produce acceptable results . Likewise,  
thick padding alone had l ittle protective effect . It  was only 
when both the car was reinforced and the inside was padded that 
satisfactory reaults were obtained . 

Figure 1 .  Car fitted with an external steel plate 
to study the e f  f ects of reducing intrusion 

After testing more realistic modifications , it became clear that 
the shape of the intruding s ide was important . In most cases 
where the s ide structure was reinforced , there was more intrusion 
at the door ' s  waistline than lower down . This comes as no 
surprise,  as it is more difficult to support the structure at 
this level . The most obvious way of providing such support is by 
reinforcement of the B post . Tests showed that substantial 
reinfor cement could be necessary to produce the required 
improvement . 

From the tests , it became clear that injury parameters measured 
by the instrumentation within the dummy thorax could be reduced 
if loads could be applied to the pelvis early in the impact . Such 
loading would be transmitted up the spine to the thorax . I f  this 
happened, the thorax could be accelerated earlier so reducing rib 
compre s s ion and cons equent ly the thorax injury parameter 
measurements .  

The· importance o f  the shape of the s ide intrusion was 
highlighted in a test on one sma l l  car . The s i l l  on this 
particular car provided l ittle support for the bottom of the door 
and the bottom part of the B post was comparatively weak ( Fig 2 ) . 
As a consequence , intrusion at the bottom of the door was greater 
than had been seen with other cars ( Fig 3 ) .  This had the effect 
of allowing the door to intrude with a vertical f lat profile . 
Although inspection of the car would lead one to expect it to 
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have offered relatively poorer protection , the results frorn 
EURO S I D  indicated that the car had perforrned rather wel l . With 
the one exception of pelvic load , the car had perforrned better 
than rnost of the rnodi fied cars . This tends to conf irrn that 
residual intrus ion is a poor indicator of inj ury . However ,  there 
is concern over the effects of pelvic loading and this is 
discussed later in the paper . 

Figure 2 .  Car with little 
door to sill interaction . 
Door intrusion prof ile is 
vertical .  

Figure 3 .  Car with 
signif icant door to sill 
interaction . Door tilts in 
at the waistline . 

2 . 2  Tests using the NHTSA Mobile Deforrnable Barrier Face . 

The Mobile Deforrnable Barrier ( MDB ) face proposed for the US s ide 
irnpact test procedure dif f ers frorn the EEVC MDB f ace in a nurnber 
o f  ways . It has greater stif fnes s ,  which is uniform acro s s  its 
width, it is wider, it has a s lightly lower ground clearance and 
is used on a trolley of higher rnas s .  The wheels of the tro l l ey 
are crabbed at an. angle of 2 7  degrees to s irnulate forward rnotion 
of the target car . The general expectation has been that the US 
test would be rnore severe than the European tes t . 

Howeve r ,  full scale irnpact tests show that this is an incorrect 
as surnption and EURO S I D  durnrny rneasurernents indicating inj ury 
leve l s  at the thorax tend to be lower with the NHTSA face than 
with the EEVC face . Furtherrnore , rnodifications that rnight be 
introduced to enable a car to pass the US test rnay not lead to 
safer cars . Modifications to increase the stif fness of a car ' s 
s ide are easier to incorporate if they can be restricted to the 
lower part of its structure . Because of its stif fnes s ,  it has 
been pos s ible in crash tests to fend off the NHTSA barrier face 
with local reinforcernent des igned to react against part o f  the 
burnper area . This was achieved us ing a car which incorporated 
local reinforcernent at the base of the A and B posts . Above the 
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local reinforcement , the B post was weakened s l ightly . The only 
other modi f i cation was the provis ion of door padding . No 
s t ructural improvements were made to the door or to the s i l l  
between the A and B posts ( Fig 4 ) . 

Figure 4 .  Positioning of local reinforcement sufficient 
to " fend off" the NHTSA MOB but not a current 

European car or the EEVC MOB . 

Us ing target cars modif ied in this way, cornparative tests were 
carried out with the NHTSA face , the EEVC face and a current 
production car . In each cas e ,  perforrnance was asses sed us ing the 
EUROSID durnrny . The rnodified target car performed better using the 
NHTSA face , passing all the criter i a ,  than it did us ing either 
the car or the EEVC face as bul let vehicle . This shows that the 
rnore massive and stiffer NHTSA face presents a less severe test 
than the EEVC face and at least one rnodel of car . These results 
must throw some doubt on the validity of us ing the NHTSA face . 

Localised low reinforcement is incapable o f  fending of f the EEVC 
face . The face s imply col lapses at that point , allowing the rest 
of the face to load the s ide of the car . As a consequence , the 
door intrudes more at i ts waistline so concentrating loads on 
the thorax . Such a phenornenon could be expected in rnany of the 
types of s ide impacts observed in accident investigations . An 
extreme example of such an impact is where the bullet vehicle is 
a l ight goods or recreational vehicle . In these cases , the stiff 
bumper could completely override low structural reinforcernent . 

2 . 3  Quasi-Static Crush Tests 

In order to obtain a better understanding of absolute and 
relative s t i f fnes s e s  o f  the various parts of a car ' s  s ide 
structure , a series of quas i - static crush tests have been carried 
out on one model of sma l l  car . 
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In the tests , a car body shell was crushed at low speed in a 
large hydraulic press ( Fig 5 ) . Loads were applied to the body 
shell  through compl iant blocks , in order to avoid local stress 
concentrations ( Fig 6 ) . Four different loading conditions were 
used; on the A and B posts at waist leve l ,  on the centre of the 
door , on the sill  alone and with an EEVC MDB face in its test 
location . Def lection measurements were taken at a matrix of 
points on the loaded and unloaded s ides of the car and loads were 
measured at each indentor .  The bodyshell  was constrained from 
moving vertical ly at each corner and lateral ly on the unloaded 
s ide of the car via a support against the full length of the 
s il l .  During the tests a series of loading and unloading cycles 
were carried out to check for hysteresis . 

Figure 5 .  Quasi-static crush test of a car side structure . 

The force / def lection data obtained from these tests is being 
used in the development of an improved computer simulation 
model . 

3. PROBLEMS OF DUMMY BEHAVIOUR ANP INJVRY CRITERIA 

3 . 1  Spine Acceleration Measurements 

For research purposes , the lateral acceleration of the EUROSID 
spine i s  measured at two points ,  corresponding to vertebrae Tl 
and Tl2 . These measurements provide useful information about the 
motion of the dummy ' s  thorax . The Tl2 measurement is also used in 
the calculation of Thoracic Trauma index ( TTI ) ( 6 ) ,  which i s  the 
criterion recommended by NHTSA for estimating the probability of 
inj ury to the thorax . 

The EUROSID dummy records spinal accelerations which agree quite 
wel l  with those seen with cadavers both in impactor tests 
against the thorax and in full scale car tests , though there are 
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no directly comparable tests of EUROSID and cadavers using the 
same model of car . 

Figure 6 .  Location of loading points , using compliant 
indentors , in quasi-static crush tests . 

However in the rigid and padded wal l  ( Heidelberg ) tests ( 7 ) , 
spinal accelerations measured on EUROSID are low compared with 
those measured on cadavers . This may be because :  

i )  The cadaver spine is lighter than the EUROSID spine . In a 
cadaver,  much of the thorax mass is in the soft tissues . These 
may not be accelerated until after the peak spine acceleration 
has occurred . 

ii ) There may be alternative load paths to the cadaver ' s  
spine , perhaps through the shoulder blades , in addi tion to 
that through the rib structure . 

Further examination of the full scale car tests , and comparison 
w i t h  s imulat ion mode l s ,  show that the r ec orded spine 
acceleration cannot be produced solely by forces transmitted 
through the rib system . Even at full dynamic compression of the 
rib springs there is insuff icient force from the ribs to provide 
an acceleration of more than about 40g,  whereas in s ide impact 
tests over lOOg has been recorded . In many of these,  there is no 
direct loading on the shoulder . There must be additional load 
paths to the spine but it is not clear what they are . 
Pos s ibilities include : 

i )  A shear force transmitted up the spinal column from the 
pelvis . However ,  the acceleration at T12 is frequently greater 
than the peak acceleration at the pelvis . So this could not be 
a complete explanation . Interestingly, the peak acceleration at 
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T12 i s  almost always greater than that at Tl , usual ly by about 
thirty to forty percent . 

The force available at the pelvis is probably much !arger than 
that which could be transmitted up the human spine . 

i i )  Loads transmitted to the spine through the abdomen . Very 
little is known about such load paths . 

iii )  Loads transmi tted directly to the spine from the seat . 
Theoretically a seat back with s ignificant curvature could 
transmit quite high loads , but this pos s ibil ity has not yet 
been demonstrated . 

More research is required to identify which of these load paths 
are present in durnrnies and humans . However, the poss ibility that 
spine acce leration can be affected by forces other than those 
transmitted through the ribs must throw some doubt on rel iance 
solely on TTI as a thoracic inj ury criterion . 

3 . 2  Spinal Interconnection Between Pelvis and Thorax 

There is evidence , from both full scale impact tests and 
computer s imulation , that early loading on the pelvis can reduce 
loading to the thorax . Such early pelvic loading, giving rapid 
s ideways movement of the pelvis , can be used to move the upper 
part of the torso before or during contact with the incoming door 
structure , so reducing thoracic loading . The amount of such 
thoracic movement is clearly dependent on the shear stif fness  of 
the spine . 

Tests on volunteers have established the range of fore and aft 
spinal stiffness between relaxed and tensed conditions ( 8 ) . The 
Hybrid I I  spine , used for the EUROS ID durnrny , has a stiffnes s  
within this range . However , no lateral stiffness data under 
impact conditions is available . I f  the human spine were to be 
more flexible than that of the durnrny , early pelvic loading would 
have less effect and de liberate attempts to move the pel vis 
early may not produce real benefits . It is also pos s ible that 
vehicle modif ications which increase the shear stress in the 
lower spine could increase the risk of spinal injuries . This 
highl ights the importance of measuring pelvic loads and 
accelerations , when studying s ide impact mechanisms , as can be 
done with the EUROSID durnrny . 

4 .  COMMENTS ON VEHICLE DES IGN 

4 . 1  Padding 

Simulation suggests that padding the s ide of the car in the 
areas adjacent to the ehest and pelvis can reduce inj ury under 
almest all circumstances . So far , full scale impact tests confirm 
this . It is likely that padding adj acent to abdomen would also 
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be advantageous .  However ,  the s imulation model s  do not yet 
inc lude an abdominal section and EUROSID has only 11 event11 
switches to detect excessive loading of the abdomen . These have 
seldom been triggered even in tests on unpadded cars , though none 
of the cars tested had rigid protruding arm rests . Consequent ly, 
improvements due to abdominal padding are not certain . 

The optimum stiffness of padding for protecting the thorax is 
dependent upon the dynamic respcinse of the ehest wal l .  Because 
of its stif f ,  mas sive ribs , the US SID dummy wil l  optimise with 
stiffer thoracic padding than the EUROSID dummy . The human rib 
system may require even softer padding . 

The choice of padding is also inf luenced by the choice of inj ury 
criterion . Viscous Criterion and Peak Rib Compress ion would 
appear to be optimised wi th different padding from that which 
optimises TTI . This emphasises the importance of using a dummy 
which is dynamical ly as s imilar as pos s ible to a l ive human , and 
of us ing inj ury criteria which relate closely to the probability 
of injury for l ive humans . 

Impact tests us ing the EUROSID dummy suggest that there has been 
a tendency to select padding which is too stif f . However , if low 
stiffnes s  padding is used it is important to provide adequate 
thickness . I f  the padding is too thin it may 11bottom out , 11 

producing a sudden increase in stif fnes s  and putting dangerous ly 
high loads on the thorax . 

The computer s imulation indicates that if the padding is much too 
stiff , or if 11bottoming out 11 occurs , injury level s  could 
actually be increased above those seen with no padding . In 
practice an increase in risk is unlikely, but its theoretical 
poss ibi lity demonstrates the importance of correct padding 
design . Variations in s ize and strength of humans also requires 
cons ideration . 

4 . 2  Structural Modif ications 

It has general ly been accepted that structural modif ications to 
reduce side impact injuries involve an overall stiffening of the 
side structure . Simulation us ing the s imple model showed that 
increasing stif fness would not always be beneficial . Beyond a 
certain point , further stif fening could increase inj ury . However , 
the optimal stiffness indicated was wel l  above that of current 
vehic les . 

The explanation of this apparent anomaly requires an examination 
of the fundamental requirements for side impact protection of the 
vehicle occupant . Prior to impact , the vehicle and its occupant 
have no lateral velocity . Within about 7 0  msec of the impact , the 
target vehicle is moving at a relatively constant velocity, which 
is the same or s l ightly greater than that of the bul let vehic l e .  
By this time , the various parts o f  the car structure have rnore or 
less reached their final , relative , post-irnpact positions . To 
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remain inside the car , the occupant must also have reached the 
car ' s  velocity and must have moved sufficiently to be ahead of , 
or in contact with , the intruded s ide of the car . To achieve this 
s ituation with minimum applied acceleration , it is necessary to 
spread the acceleration over as lang a time as possible . 

One way of achieving this is to start the acceleration as soon as 
pos s ible . Stiffening the s ide structure increases the col lapse of 
the bul let car ' s front , so reducing door intrusion veloci ty . 
However ,  it also delays the time of f irst contact with the 
occupant , leaving less time for the acceleration to take place . 

The concept of an " overa l l "  stiffness of the s ide is now seen to 
be a misconception , aris ing from early experiments us ing a rigid 
barrier in which the whole s ide of the car was constrained to 
intrude in step with the barrier movement . This does not happen 
in impacts between cars . 

It  was found that the s imple s imulation model could not provide 
an adequate explanation of the data obtained f rom impact tests 
us ing deformable barriers . This is because the relative motion of 
the various parts of the s ide structure is important . The new 
simulation model wi l l  treat the s i l l , the A and B pillars and the 
door as separate entities , which can move relative to one 
another . The resulting dynamic system is complex and its 
properties have not yet been analysed in detai l . However , some 
indication of the structural design requirements has been 
provided by the full scale impact tests . 

It i s  clearly desirable to provide a stiff s i l l , which is high 
enough to engage with stiff points on the bul let vehicle , to 
" fend off "  the bul let vehicle in the early stages of the impact 
and initiate col lapse of its front . This can be aided by strong A 
and B post s . 

However ,  care must be taken to ensure that the B post remains 
relatively upright so that it does not intrude at a higher 
velocity at the car ' s waistline than at s i l l  level . On many 
current cars , the B post tends to bend at the waistl ine 
resulting in a high s ide intrus ion velocity adj acent to the 
thorax . This may concentrate loads on particular ribs as wel l  as 
on the thorax as a who le . 

The requi rements for the door are less clear . Excess ive 
stif fnes s  early in the impact will delay impact with the 
occupant , so reducing the time available to accelerate him . 
However,  this delay could be reduced by the provision of padding 
to decrease the gap between the door and the occupant . 
Constraining the door from overriding the s i l l  may also cause 
problems . Exces sive stiffness at the bottom of the door is l ikely 
to emphasise the way doors tend to lean in at the waistline .  
Impact tests have indicated the des irabil ity of keeping the door 
vertical to spread the load evenly over the torso . 
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A door which behaves like a tensioned membrane may provide a 
solution . I t  would deform eas i ly in the early stages of the 
impact , quickly closing the gap . It would then rapidly stiffen 
so reducing its velocity during impact with the occupant . 

In the impact tests at TRRL , motion o f  the inner and outer door 
skins is measured . Currently, for practical reasons , these 
measurements have to be made at points forward of the thorax and, 
although they have produced much valuable information, it is 
clear that the measured velocities differ from tho s e  adj acent to 
the thorax . At the moment , attention is beirig paid to obtaining 
better information on the detail s  of door motion adjacent to the 
occupant . This should then give a better indication of how doors 
might be designed to improve occupant protection . 

4 . 3  The Influence of Intrusion on Occupant Injury 

In the pas t ,  it has been assumed that minimising intrusion is 
des irable . A direct relationship between intrusion and injury 
may hold good in accidents involving broadly similar des igns of 
car , but this may be because both intrusion and injury are 
independently related to impact severity . Full s cale tests , of 
the same severity, suggest strongly that there is no clear 
corre lation between extent of intrusion and injury in different 
mode ls of car . In some cases , lower levels o f  injury parametere 
have been recorded with higher level s  of intrus ion ( 4 ) . 

Because injuries are related to the velocity of intrusion , an 
initial high intrusion velocity continuing through the period of 
initial contact with the occupant will give a higher probability 
of inj ury than a lower velocity which continues for a longer 
time , even though it may result in greater f inal intrusion . 

5 COMPUTER MODELLING OF S IDE IMPACT 

5 . 1  Basic Model 

The original s ide impact s imulation model ( Fig 7 )  was based on 
data from rigid impactor test s , where the whole barrier front 
and the who le s ide of the car were constrained to move together . 
When the model was modif ied to represent a deformable barrier, 
the solid front of the mobile barrier was replaced by a spring 
and light mass .  This represented the contact plate at the front 
of the deformable element which impacted a mas s le s s  outer door 
s kin . The outer door skin was connected to the inner skin by a 
further spring . This inner skin included a major part of the 
mas s  o f  the s il l ,  and was connected to the main mas s  of the car 
through a spring representing the structure supporting the s il l .  
The occupant was loaded through a spring representing the door 
padding, once an initial gap had been closed . A l l  the springe 
were non-l inear and were represented in the s imulation by 
tabulated functions . Special routines al low for hysteres i s  
effects as the springs unload during the impact .  The occupant i s  
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represented by a mas s / spring/damper system which models the 
thorax of the EUROS ID dummy . 

Barrier front 

Deformable foam 

Door outer skin 

Figure 7 .  Simulation model of EUROSID dummy 
in side impact ( basic ) 

5 . 2  Deficiencies in the Basic Model 

This model has been useful for helping to explain the dynamics of 
s ide impact and for obtaining qualitative information about the 
ef fects of varying certain parameters . However , comparing the 
model with data from impact tests has shown that it is too s imple 
to provide an adequate representation of the impact . Some 
s ignificant deficiencies are : 

i )  Both the EEVC and NHTSA .mobi l e  deformable barriers have 
dif ferent stif fne s s e s  at the top and · bottom . The stif f lower 
part of the barrier contacts the bottom of the door , with a 
fairly direct transmis sion of load into the s i l l  and A and B 
post structures . The softer top o f  the barrier contacts the 
upper door and higher parts of the A and B pos t s . 

i i ) The s il l ,  the A and B posts and the door are separate 
structures which can move relative to one another . This 
relative movement can be an important determinant of s ide 
impact inj ury . 

i i i ) The door contacts the occupant on the abdomen and pelvis ,  
as wel l  as the thorax . The spine connecting the pelvis and 
thorax can bend , shear and rotate . The e f fect of pelvic loading 
on the motion of the thorax appears to be important in 
determining the severity of thoracic inj ury . 

iv ) The door is liable to rotate in the ro l l  plane as it 
intrudes .  A door which intrudes rnore at wai s t  leve l than at 
the bottorn appears to be more injurious to the thorax . 
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5 . 3  Development of a New Simulation Model 

A new simulation model is being developed based on knowledge 
gained from impact tests and us ing numerical data obtained f rom 
quasi-static crush tests . The development i s  being carried out on 
a step by step bas i s , with a limited number of new features being 
introduced at each s tage . This is in order that the effect of 
each change can be asses sed and so that no unnecessary 
complication is introduced . The present stage of development is 
shown in Fig 8 .  

Figure 8 .  Simulation model of EUROSID dummy 
in side impact . (modified) 

The deformable barrier face has been split , with the top half 
impacting the door and the bottom hal f  contacting the s i l l . The 
s i l l  is connected to the main mas s  of the car by a spring, and 
the door is connected to the s i l l  by another spring . There is 
separate padding on the inside of the door to contact the thorax 
and the pelvis . The pelvis is attached rigidly to the bottom of 
the spine but the s ingle rib , which currently represents a l l  
t h r e e  o f  EUROS I D ' s  ribs , is connected through the same 
spring/damper system as used previously . The spine has a moment 
of inertia as wel l  as mas s .  It can rotate freely but , at 
present , it does not bend or shear . Initial gaps can be set 
between each part of the barrier and the car and between each 
part of the padding and the dummy . 

The next stage of development is to examine the connection o f  the 
door to the s i l l  and the rest of the car structure , in the light 
o f  the results f rom the quasi-static crush test e . This will 
require an understanding of the way in which the B post and the 
door move when loaded by the barrier face and · what inf luences 
rotation of the door . A'C this stage , it should be possible to 
ignore differential movement of the A and B post s . subsequent 
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development is likely to include a more realistic model of the 
durnrny spine . This more complex model is s t i l l  an extremely 
s implistic representation of the mechanisms involved and it 
cannot be expected to be a reliable predictor of the ef f ects o f  
s ide impact . It should , however ,  provide a better understanding 
of the processes observed in ful l - s cale impact tests and a l l ow 
some extrapolation of these resul t s  to indicate likely avenues 
for improved design .  

6 CONCLUSIONS 

The work described in this paper shows that we are s t i l l  far 
from having a complete understanding of the dynamics of side 
impact . Consequentl y ,  we are s t i l l  unable to def ine precisely 
the design principles that would maximis e  occupant protection . 
However ,  useful progress has been made and we have obtained a 
clearer idea of the complexities o f  the problem . Knowledge grows 
as the test prograrnrne proceeds , but already valuable les sons have 
been learnt about how s ide impact protection can be improved . 
Same important conclusions can be drawn : 

i )  The shear and bending stiffnes s o f  the durnrny spine can have 
an e f fect on the relative loading� of the pelvis and thorax . I t  
is desirable that these stiffne s s e s  should b e  reasonably close 
to those of live hurnans . It is important to monitor pelvic 
loads and accelerations in s ide impact crash tests , to ensure 
that thoracic injuries have not been reduced at the expense o f  
unacceptably high risks to the pelvis o r  spine . 

i i )  There is some mystery about the load paths that transmit 
the forces necessary to produce the high spine accelerations 
seen in full s cale impact tests us ing durnrnies and cadavers . 
This uncertainty throws doubt on the adequacy o f  the 
acceleration-based Thoracic Trauma Index as an indicator o f  
thoracic inj ury and strongly supports the u s e  of Vis cous 
Criterion and peak rib compression as an alternative . 

iii ) The indicated optimum stiffness for padding can vary 
quite widely with different durnrny des igns , and with the inj ury 
criteria used . 

iv ) There are indications that the provision o f  a very s t i f f  
structur e ,  t o  minimis e  intrusion, w i l l  not neces sarily provide 
good protection . It is , however ,  important to optimise the 
relative stiffne s s  of the various parts of the s ide structure , 
and it appears to be very important that the inside o f  the door 
remains vertical as it intrudes . 

v )  The complicated interactions between the various parts o f  
the s ide structure mus t  throw doubt o n  the validity of any 
s imple computer model . At TRRL a more comprehen s ive model i s  
under development and this wil l  be used t o  investigate and 
extrapolate upon the results from impact testing . Present 
mode l l ing abi l ity is s t i l l  a long way f rom reliable 
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prediction, from first principles ,  of the results of s ide 
impact . 

vi ) A preliminary study of the proposed US MDB has shown that , 
in spite of its greater stiffness and mas s ,  it appears to 
present a less severe and less realistic test of s ide impact 
protection than does the EEVC MDB . It may wel l  be pos sible to 
design a car which will pass a test us ing the US MDB face , but 
which would be no safer in road accidents .  

The EUROS I D  dummy has proved its value as a research tool and has 
shown that it is capable of meeting current requirements for use 
in regulatory testing. 
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