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Introduction

Data regarding impact tolerance levels in head injury research have to be
based on experiments performed on cadavers or animals for obvious reasons.
From the differences in shape and size between animal brains and the human
brain follows that no direct conclusions regarding tolerance levels for man
can be made from animal tests. The shape problem is generally handled by
choosing a test animal_(model) whose brain shape resembles that of a human
(prototype) as closely as possible. In most cases primates have been chosen.
The size problem has been handled by the use of some scaling technique, the
most natural of which was proposed by Ommaya et al., (1967). The assumptions
made in their paper are cited below:

. The brain acts as an elastic medium.

. Brain tissue is homogeneous and isotropic in nature.

. The density of this tissue is equal in model and prototype.

Model and prototype brains are geometrically similar, through one scale

factor.

5. Injury is the result of shear strains exceeding a certain value.

6. The skull is very stiff, such that deformations of the skull do not contri-
bute heavily to the strains in the enclosed brain.

7. Stiffness factors of the contained brains in model and prototype are equal.

The third and seventh of these assumptions might be generalized to the state-

ment that material propertieas in the model and the prototype are equal.

Anisotropic effects, if any, could alsc be incorporated in such a statement.

This is a very natural assumption and it is largely supported by experimental

vork, e.g. the comprehensive study at West Virginia University, (1970).

Furthermore, the assumption of geometrical similarity could easily be ex-

tended to cover also inhomogeneities, so that the second assumption would

in fact cause no restrictions on the choice of possible models in itself.

In the same manner one could of course allow significant skull deformation

if geometric similarity and material equality were extended to hold true

about skull bone as well.
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When discussing scaling techniques it is not really necessary to detail the
exact injury causing mechanism, be it intracranial strains. stresses, forces
or pressures which are belived to exceed their respective critical values.
The critical value is a property of the material as long as rate effects can
be neqlected. Usually rate effects on the strength of materials are fairly
unimportant in intervals where the rate can change by at most a factor of
ten, cf. Lowenhielm (1974). Here, therefore, it is assumed that the appropri-
ate critical value is simply and solely a property of the material and as
such then already assumed equal in model and prototype. The fifth assumption
therefore does not impose any restrictions on the choice of model. The first
assumption, stating elastic behaviour of the involved materials ( thereby



excluding for instance time dependent behaviour), can however not be support-
ed by experimental data. The viscoelastic nature of brain matter is clearly
shown by e.g. Schuck and Advani, (1972) and Ljung, (1975). Let us exemplify
the problems which arise if viscosity is incorporated as a significant material
parameter in the study. Say that we wish to compare geometrically similar
systems exposed to actions which in some sense are similar. Then the para-
meters describing the geometry (the positions of white matter, grey matter,
skull bone, etc) can be expressed by means of one single quantity, R, of
dimension length, typical (and different) for each different system, and a
set of dimensionless quantities that are identically the same for all systems
regarded. This means that all distances of a system scale linearly with R and
that they need not appear in the continued reasoning.

Similarly, the action of the forces that provoke motion of the systems should
be expressible by means of one single quantity, say an acceleration a(t).
Since equality of material behaviour was assumed, only one characteristic

set of material constants is needed. Let us denote the characteristic propa-
gation velocity of equivoluminal waves by c., the characteristic ratio bet-
ween the propagation velocities of equivo]u%ina] and irrotational waves by

k and the characteristic kinematic viscosity by v. Then, assuming that

we wish to study the shear strain in the brain at a given point as a func-
tion of time, t, we may surmise that the expression

7=y [t; Ry cps ks V3 a(t)]

can be used for all systems regarded. Since c+, k and v are identical for all
systems, they are shown explicitly only for tﬁe special purpose to investi-

gate the relative significance of elasticity and viscosity.

According to the Buckingham Pi Theorem (cf. Baker et al., 1973) the shear
strain y can be written as a function of a complete set of independent
dimensionless groups, formed from the variables and parameters on which y
depends. Thus we can write

c~t v Ra
Y = f’<'T ; : 2)
R cTR Cr

or

‘vt v R3a
Y=9gf — 3 =— s —
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It is immediately clear, from the appearance of the middle argument v/c R
in the two expressions for the shear strain, that a consistent scaling law,
expressible by means of one scaling factor only, cannot be found. However,
at the two asymptotic ends, zero viscosity and zero rigidity, we obtain

Gt Ra
Y=f(_‘f_;o;_z)
R cT

and

vt R3a
Y‘-‘Q—R-;;“’,\)T

respectively. Thus in both cases a simple scaling law exists. In the first
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case time, t, scales linearly with R, provided that Ra/ TZ is a fixad functicn
of c.t/R for all systems regarded. In the second cace “ime scaies lineariy
#ith R=, provided that R%a/v® is a fixed function of wi/R°. It should be nated
that the requirements that Ra/c.~ should be a Tixed function of c_t/R in the
first case and that R*a/v® shouid be a fixed function of .t/R® ir the second
case are themseives implications ot the scaling laws for time and distances.
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it is now natural to assume that the first scaling law mentioned is approx-
imately applicable when v/Rc; is small and the second law when v/Rc+ is large.
The meaning of "small" and “Targe“ for a certain required accuracy Eas to

be extracted from the character of the function y. Since y is a functional

of the provoking function a(t) it is natural that the result of such an
investigation will yield different results for different types of functions
a(t). Furermore, since for each given class of similar systems v and

c¥ %re fixed, it is also possible to relate the result to the magnitude

0

It is immediately obvious how the scaling law should be modified if a typical
velocity v(t) had been chosen instead of the acceleration a{t) to describe
the outer action on the system. Then. in the first case v/c.. should be a
fixed function of c+t/R for all systems regarded and, in thg second case,
Rv/v should be a fixed function of vt/R*.

In the present investigation three different kinds of actions on an ideal-
ized skull-brain model will be discussed. They give rise to:

1. Transient motion following a short duration impact,

2. transient motion following a long duration impact and

3. periodic motion in steady state.

The discussion will be based on numerical calculations for a simple model of
the skull-brain system developed by Ljung, (1975). Calculations will be made
for three different skull sizes, approximating those of man, chimpanzee and

squirrel monkey.

Calculations

The model used consists of a rigid, infinitely long cylindrical shell of inner
radius R. The shell is filled with a viscoelastic material of density A, which
is described by a first order Kelvin-Voigt model. The two parameters of this
model are the kinematic viscosity, v, and the shear modulus, G. If the shell
is exposed to a sudden change in angular velocity, so that it starts to rotate
with a constant velocity v, around its axis the tangential displacement compo-
nent, Ups of the viscoe]asgic material at radius r will be (cf. Ljung, 1975)

Y- Jy (ovy) Y.iz:\
ety = oot + 23, Fpre - o (e g

: Y’iz 2 Yiu V¥ 1
csin Nm o’ - 1—1:] (1)
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where c. = V/G/A  is the propagation velocity for equivoluminal waves, p = r/R
is the Ie]ative radius, J (z) denotes a Bessel function of the first kind and
Y; are the zeros of J](Z)P The displacement relative to the rotating shell is

U=up - vy ot =u, (2)

and the shear in the viscoelastic material at the inner surface of the shell
is

au) duy
(W r=R =(W)r=R (3)

The situation where the cylinder starts to rotate with a constant angular
velocity is representative of what happens after a short duration impact

i.e. where the impact duration is much shorter than the natural period of

the system. Fig. 1 shows in dimensionless form the shear at the inner surface
of the shell as a function of time for some different shell radii.
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Throughout the calculations three values of the shell radius have been used:
R=0.10m, R=10.07 mand R = 0.04 m. These values are typical for the skull
size of man, a big ape (e.g. a chimpanzee) and a smaller monkey (e.g. a
squirrel monkey) respectively. The values v = 0.009 m?/sec and ¢y = ¥.3 m/sec
are taken from a previous experimental investigation (Ljung, 19}5).

Let us now turn our attention to impact durations which are long in compari-

son to the natural period of the system. In this case one has to look for the
response to a suddenly applied constant rotational acceleration of the shell.
If this acceleration at radius r = R is a_ we obtain the shear at r = R from
the relation P

au a0 auo
(W)r:R "% (W)r=R G (4)

This shear is shown in dimensionless form in Figure 2 as a function of time
for some different shell radii.
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Finaliy, we wish to study the steady state response to a periodic moticn of
the skull obeying the relation

u(l,t) = |A| . sin wt. (5)

Fig. 2. Mathematical simula-
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If the result is to be expressed by the shear at the inner surface of the
shell

%%)r=R = [A].{B(w)].sin(wt+p(w)), (6)

the simplest way to obtain the resulting amplitude |B(w)| and phase ¢ (w) is
via the impulsive transfer function of the system, 1.e. the Laplace transform
of the system response to a unit impulse. This is found to be

H(s) =2 . ¢ T o . (7)
i i i
i=1 s? + oz Vs + o7 Cf
Now
[B(w)| = [H(jw)] (8)
and
s(w) = arg H(ju) = arctan 1M H{Jw) (9)

Re H(jw)

where j = /-T. These two quantities are shown in Fig. 3 as a function of
dimensionless frequancy for some different values of the shell radius R.
For the benefit of those who wish to interpret the diagram as a Bode plot.
1egarithmic axes have.bzen used.



Fig 3. Mathematical simu-
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Discussion

In all cases studied the dimensionless quantity v/Rc+ < 0.18, i.e. it is
small compared to 2/y,=0.52. Consequently, the dimgnsionless forms used

in Figs. 1-3 pertain %0 a system which is essentially elastic in nature.
These dimensionless forms also agree with the scaling procedure proposed

by Ommaya et al., (1967), It is however easily seen from the figures that
the Tegitimacy of this procedure is not entirely obvious, since different
values of the shell radius R yield different results. The extent to wh1ch
the studied viscoelastic cases approximate the pure elastic case (v/Rc

and the pure viscous case (v/RcT=w) can be found from Figs. 4 and 5. TEe
role of the radius R (the absolute size of the studied system) is clearly
demonstrated. Obviously. the bigger the system we study, the less pronounced
will the influence of the viscosity be on the system performance. Conversely,
a very small viscoelastic system will behave almost entirely as a purely
viscous one. The cases studied are however truly viscoelastic in the sense
that they do not closely resemble any one of the two limiting cases. Thus
the solution in the case of the squirrel monkey does not resemble the vis-
codynamic solution at all and the amplitude differences between the solu-
tion in the case of man and the elastodynamic case are pronounced. In the
1atter cases, however, one might argue that the essence of the solutions is
the same.

If we first turn our attention towards the responses to periodic excitation
depicted in Fig. 3, we can immediately conclude that scaling attempts
regarding the amplitudes in such experiments may well lead to quite unsatis-
factory results. At the fundamental resonance peak the difference in amplitude
is more that 25 % when the skull radius is changed from that of man to that

of chimpanzee. When the same comparison is made between man and squirrel
monkey the difference is more than 75 %. Even though the agreement is quite
good between the positions of the resonance peaks, it will obviously be
dangerous to draw any quantitative conclusions from model experiments of this
kind. As a consequence, inferences regarding tolerance levels will be equally
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hard to get. On the other hand, it would clearly be possible to determine the
location of the main resonances frcm model experiments.
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In Figs. 1 and 2 the responses to transient excitation are shown. It is
immediately clear from the figures that the scaling law chosen Teads to

good agreement as far as scaled times are involved. This is of course in direct
agreement with the aforementioned fact that resonance frequencies determined
in model experiments are good estimates of the true ones. The assumed elasto-
dynamic scale laws will also yield good estimates (within 5 %) of the ampli-
tudes, if the shell radius R is restricted to the range 0.07 - 0.10 m. In

the case of long duration impacts one might even extend this range on the
basis of the fo?lowing lines of reasoning. The maximum amplitude is reached
during the first overshoot of the response. The duration of this overshoot

is (in this slightly modified case) solely determined by the lowest natural
frequency of the system, and is consequently much shorter than the load

pulse duration. Now, most injury mechanism models take into account the fact
that biological tissue can withstand stresses of much higher amplitude if the
duration of the pulse is short than if it is long, see e.g. LOwenhielm,
(1974). When discussing long duration impacts (Fig. 2) it would therefore

be defensible to look more at the finally settled amplitude level than at



the maximum amplitude during the overshoot period due to the fact that the
overshoot is fairly modest. It is true that the settling time of the response
increases as the shell radius decreases, but at the same time the overshoot
is decreased. It would then be reasonably safe to assume that scaling could
be used at long duration impacts even from small monkeys to man, at least
when tolerance levels are sought.

At short duration impact, as suggested by a study of Fig. 1, the maximum
amplitude, on the other hand, should be decisive, since the response is
dominated by the first overshoot. If scaling is attempted from squirrel monkey
to man under these circumstances one could expect the resulting tolerance
levels to be approximately 20 % too high. Such a possibility has been men-
tioned in a dissertation by Lowenhielm (1977). It would be possible, although
somewhat dubious, to extend the feasible scaling range by the following kind
of reasoning. It was shown previously that in the elastodynamic case time
sqa]es Tinearly with R if the provoking function (in this case the accelera-
tion) fulfils certain requirements (Ra/c,? should be a fixed function of
cgt/Rg..In the viscodynamic case time scgles linearly with R? provided that
R3a/v”® is a fixed function of vt/R%. This means that the amplitude of the
provoking acceleration in the first case scales linearly with 1/R and in

the second case with 1/R®. In the viscoelastic case at hand one could then
1Q§H1ne a scaling law of the following form: Time scales linearly with

R, wh re n is a number in the range 0-1, provided,that (Ra/c 27y,
(R*a/v?)" "is a fixed function of (c,+t/R)" . (vt/R?) . In the elastodynamic
case n = 1, while in the Viscodynamig case n = 0. One should be aware of

the fact that this scaling law changes the scaling of the time parameter from
the so far used elastodynamic one, which was shown to yield good approxima-
tions. In the case of the presently discussed skull-brain model one should
choose n ~0.8 to obtain acceptabTe scaling results in the range 0.04 m < R <
< 0.10 m.

Concluding remarks

The appropriateness of the simple scaling laws for elastodynamic systems has
been investigated for two different sizes of the model skull. It was found

that the applicability of these laws is dependent not only on the ratio

between the prototype and model skull size (expressed by R), but also on

the absolute sizes. Thus the same scaling law would be far less successful

in the range, say, R < 0,01 m than in the range of present interest, R < 0,04 m
even if the ratio between prototype and model skull size had been the same.

For very small radii, say R < 0,01 m, the scaling laws for viscodynamic systems
would be the suitable ones.

Some uncertainty still prevails regarding the legitimacy of using the scaling
laws for elastodynamic systems in the range considered since the value of the
critical parameter v/Rc; depends not only on R but also on the material
parameters v and c,. At experimental determination of v (Ljung, 1975) it was
found that a rathe; large scatter was prevalent. This may, however, reflect
not only the fact that variations in biological matter are normally substant-
jal, but also that the system response is rather insensitive to variations of
v. This apparent insensitivity was also demonstrated in the paper referred
to, and implies indirectly that the scaling Taws for elastodynamic systems
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should be appropriate.

Differences in shape also play a role, a problem which however has to be
considered in a less general manner than the scope of this paper allows for.
The significance of the skull shape is closely connected to the kind of in-
Jury produced, and should be considered separately in the Tight of tne
proposed injury mechanism.

To sum up, it has been shown that the simple scaling lTaws valid for elasto-
dynamic problems should be expected to give a fair accuracy at attempts to

translate results from chimpanzee to man, and, if a certain degree of cau-
tion is exercized, even at scaling from squirrel monkey to man. The scaling
laws are more adaptable to experiments which rather directly simulate head

impacts in practice, than to indirect experiments such as periodic excita-

tions of brain motion.
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