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ABSTRACT 

This  paper is part of our systemati c  effort to investigate the phe
nomena of traumatic  head injury. lt deals with a fluid-fi l led rigid container , 
moving with an init ial velocity ,  striking a rigid wal l through a spring and 
dashpot in paral le l , so that an impuls ive load is applied to the ensemb l e .  
This particular abstraction o f  the direct head impact phenomena appears to be 
ideal as a bridge between the s impl istic  one degree-of-freedom and the complex 
two- or three-dimensional continuum models of the same . 

An exact closed-form (wave propagation) small-time solution for the 
l inear problem associated with the above model was obtained and reported else
where . Using the exact solution to the posed problem as a bas i s ,  a computer
aided finite-difference numerical  solution was obtained for the system . The 
field descriptions of the fluid pressure and container acce leration depended 
on a smal l  number of dimensionless parameters . These are : ( 1 )  The ratio of 
the velocity of the skul l  container (just prior to impact) to the wave speed 
in the cerebrospinal fluid and brain ; (2)  the brain to skull  mass ratio ; (3) 
the damping factor of the skull materials and (4) the brain to skul l  stiffness 
ratios . The head injury potential of a given impact is assessed as a function 
of the system response .  Container acceleration is not a good index of the in
jury potential . 

INTRODUCTION 
Because of the special vulnerabi l ity of the head to traumatic  injury , 

there have been many models proposed which served either to  correlate the ob
served experimental injury data and/or to del ineate the injury mechanism . In 
the former category are usually  simplistic lumped-parameter models , which are 
based on the notion that in any given impact situat ion , one can usually discern 
these e lements : mas s ,  elasticity,  dissipation and nature of the input pulse .  
The solution of  the differential equation associated with either a s ingle- or  
two-degree-of- freedom problem yields the rel at ionship between the e lements of  
the model .  The system parameter inputs are then found through mechanical 
(usually driving-point) impedance measurements . Assuming a damage criterion , 
e . g . , the spring always breaks at a certain force level , the solutions to the 
ordinary differential equations then allow for the plotting of the theoretical 
impact tolerance curves .  The correct tolerance curve is that one which "best 
fits the observed histopathological data . "  Typical of the more recent apJ?_l ica
t ion of this idea to closed head trauma is the paper of Stalnaker et al . Ll] . 

The maj or advantage of the simple  oscil lator type model s  i s  the ease 
of so lution and hence of use -- there being so few parameters in the model .  
On the other hand , its principal deficit  i s  its  inabil ity to account for the 
where , when and why of the inj ury mechanism. To overcome this disadvantage ,  
a paral le l  series of continuum models  have been proposed to relat e  the injury 
mechanism to the mechanical parameters of the problem .  These generally involve 
the axisymmetric dynamics of fluid- fi l l ed rigid or elastic spherical shel l s .  
These models  have been recently reviewed by Goldsmith [2] and Liu [3] and wil l  
not be reiterated in the interest of brevity .  These two- or three-dimensional 
models , because of their continuum nature , involve a much larger number of di
mensionless parameters . The complexity of its mathemati cal  solution often 
tends to obscure the physics of the problem.  

Recently ,  Hayashi [4] proposed a one-dimensional continuum mode l ,  
which appeared to b e  quite promising as a bridge between the simplistic  lumped
parameter and the complex two- or three-dimensional continuum mode ls  because 
it has a reasonably small  number of parameters and st i l l  has an identi fiable 



and plausib le  inj ury mechanism .  He ideal i zed the closed head impact problem 
as a fluid-fil led ,  rigid but massless vessel with an attached spring striking 
a rigid wal l .  The vessel represents the skul l ;  the fluid , the brain and cere
brospinal fluid (CSF) and the spring , the composite elastic properties of the 
helmet , skul l ,  hair , skin and the elasticity of the real wal l .  He obtained an 
infinite series solut ion to the problem. For smal l values of t ime , his given 
So lution was very s lowly convergen t ,  if at al l ,  and hence was unsuitable  for 
numerical work . However,  when he restricted the problem to ei ther very soft or 
very hard impacts , a one-term approximation was adequate to obtain the pressure 
field and the time-history of the container acceleration . Liu [3] gave a 
closed-form exact solution for the problem posed by Hayashi [4] in terms of 
wave propagation .  These results showed that the softer the impact the better 
the Hayashi [4] approximation . Very soft impacts denote situations where the 
e last icity of the fluid is large compared to that of the lumped spring of the 
container . As the impact became harder, attempts to reconcile the infinite 
series so lution to the exact one , by increasing the number of terms in the 
series , fai led completely.  

The present paper c larifies this lack of self consistency by adding 
t o  the Hayashi [4] formulation the container mass and its diss ipation .  That 

the container (skul l )  mass is not negligible can be shown by the fo l lowing 
considerations . The average human head weighs about 4 . 5  kg . I ts cranial 
cavity has a mean volume of 1 , 500 cm3 according to Bl inkov and Glezer [5] . 
Assuming an average specific weight of 1 . 02 gr . /cm3 for the brain matter and 
CSF ,  we get a fluid weight of about 1 .  5 kg .  Thus the "brain" to  "skul 1 1 1  
weight ratio is  µ = 1 . 53/3 . 00 � 0 . 5 .  Even i f  one were to go to the extreme of 
using dried skul l  bone weighing about 300 gm on ly ,  e . g . , in the experiments of 
Roberts et al . [6] the weight ratio is at best µ = 1 . 5/ 0 . 3  = 5 .  In the Hayashi 
[4] model µ was considered to be infinite , i . e . , the container is massless . In 
the animal experiments of Stalnaker et al . [ l ] , the mass ratio was also about 
0 . 5 .  The justification for the inc lusion of damping in any real system is 
quite obvious . Stalnaker et al . [l] have indicated that the brain is critic
a l ly damped . 

A.  Formulation 

A One-dimensional Continuum Mode l 

The present model is  an improved version of the one-dimensional con
tinuum model - for closed head inj ury due to Hayashi [ 4 ] .  The system consists 
of a rigid container (skul l )  of mass m containing an elastic fluid (brain and 
CSF) . The container is  attached to a spring k and damper d in paral lel . The 
spring and damper represent the composite e l astic and diss ipative properties 
of the he lmet , hair ,  skin , skul l and the real wal l .  Thus , the closed head 
trauma problem is ideal i zed as the impact of a fluid-fil led ,  rigid container 
attached to a spring-dashpot element striking a rigid wal l ,  see Figure 1 .  The 
governing differential equation of the fluid is the wave equation : 

- - 2-ut t  + �tt = c �xx ( l )  

where ü = the rigid-body displacement of the container 

t = the t ime 

t cx ,t )  = the displacement of the fluid at location x relative to the 
container 
1 

c = (B/p )� = wave speed in the fluid 
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(a) 

-J. 

(b) 

m 

Figure 1 .  Direct 1-lead Impact Model 

B = the bulk modulus of the fluid 
p = density of the fluid .  

F = k ü  
F= dilf 

The subscript notation is used to denote part ial differentiation and the hatted 
� variables des ignate physical quantities . The initial and boundary conditions 
are respect ive by : 

� (x , O) = ü (O) = 0 �t (x , O) = 0 ; üt (O) = vo (2) 

� ( O , t )  = � (i , t )  = 0 

müH + düt + kü = AB [ux ( O , t) - ilx ( i , t )J , 

where v0 = velocity of the container just prior to impact 

i the l ength of the fluid "rod" 
m = mass of the container 
d = lumped damping coefficient of the container 
k lumped spring constant of the container 
A = cross-sect ional area of the fluid "rod" 

(3) 

F.quations ( 1 ) , (2 )  an<l (::>)  a r o  v ö l i J µr i o r  t o  t l 1 t:" reiJPUttd uf l: n e  con
tainer , i . e . , as lang as contact with the wal l  is maintained . When the srring 
force becomes zero , lass of contact between the container and wal l  is impend
ing , hence the rebound condit ion is 

kil > 0 
Equation (3) expresses  the dynamic equi l ibrium of the container and i s  obtained 
from a simple  free-body diagram analysi s ,  shown in Figure lb .  Using the fo l 
lowing nondimens ional parameters : 

u = il/ i , � = ui ' t = ct/i 
V = V /C  w2 = k/m � = d/2mw k = BA/i (5) 0 n n f 

J.l = m/m K = k/kf 
Q2 = w i/c = K ].l , n 

where V = velocity ratio ,  � = damping ratio ,  µ mass ratio and K = stiffness 
ratio .  The nondimensional differential equation and associated initial and 
boundary conditions are :  



and 

s (x , O) = u(O )  = 0 ; st (x , O )  = 0 
s O , t) = s C l , t) = o 

n2u + .2nr;ut + utt = µ [sx ( O ,  t)  - sx ( 1 , t)J 
The nondimensional pressure P (x , t) = - s (x , t ) . X 

(6) 

(7)  

(8)  

The coupled system of ordinary and �artial differential equations 
given in (6) - ( 8 )  was solved exactly by Liu L7] using the method of Laplace 
Transformation . The behavior, i . e . , the pressure fie ld ,  container acceleration 
and displacement , are tracked for every wave traversal . Unfortunately ,  as the 
number of wave traversals increased , the exact so lution became increasingly un
wieldy .  To this extent the exact solution is  suitable  only for the smal l  time 
region , e . g . ,  three to four wave traversals were given in ( 7 j . The exact solu
tion showed that P (x) = - P (l - x) for al l  t ,  i . e . , the pressure in the con
tainer is skewsymmetric about x = �. where the pressure is zero . Thus , (8) can 
be s implified to 

n2u + 2 r;nut + utt  = - 2µP (O , t ) , (9) 

s ince P (O , t) = - P ( l , t) . Also , we need only calculated the solution in the 
interval 0 .:5_. x .:5_. � .  
B .  An Important Special Case 

The form of (9) suggests very strongly that the motion of the con
tainer is simi l ar to that of a simple  spring-mass-dashpot system. The motion 
is modified by the fluid pressure in the container . In fact , the complex mo
tions and field fluctuations are best discussed by comparison with the fo llow
ing special cas e .  

Suppose one neglects the fluid-solid interaction ,  i . e . , the head is 
considered only as a rigid-body of mass m + mf . The solution to such a problem 
is wel l -known and we repeat it here only because we need to solve it in the 
l ength- and t ime-scales of the ful l  problem. Denote the rigid body displace
ment of the combined container and fluid masses by y (t ) , then we get the usual 
ordinary differential equation and its associated initial conditions : 

(m + mf) Yn + d)\ + ky = o 1 
(10)  

y (O) = 0 ; yt (O) = v0 
We nondimensionali ze ( 1 0) by adding y = y/� to those already defined in (5) to 
yield 

y + 2cxwy + w 2 y  = 0 1 tt t 

y (O )  = 0 ; yt (O) = V 

where the new constant coefficients are related to those in (5) by : 

ex =  r; / ( l  + µ ) �  } 
w2 = n2/ ( 1 + µ)  

( l l )  

( 1 2 )  
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where 

The so lution to ( 1 1), according to Thomson [ 8 ] ,  i s : 
-awt y ( t )  - e sin [w ( l -a2 )�t ]  --v- -

2 Yz w (l -a ) 

:: 

( 13)  

( 1 4a) 

( 14b) 
Even in these s imple  forms , certain important estimates of the ful{ problem can 
already be made . For examp l e ,  the rebound occurs when s in [w ( l -a2)7zt ]  in ( 13 )  i s  
zero , i . e . , loss of  contact i s  pending at 

I, 
t = w/w (l-a2 ) � ,  ( 1 5 )  c 

where tc is the contact duration . The maximum acceleration occurs at 
cos [w ( l -a2) t + � ]  = 1 in (14a) 

or 1 
2 7z t = - �/w(l-a ) , m (16)  

where tm i s  the time to maximum acceleration, Figure 2 i s  a plot of (14)  with 
- Ytt/wV on the rordinate, wt as abscissa,  and a as the parameter. Note  that for 
a > 0 . 5 , the maximum acceleration occurs at t = 0 but a .::_ 0 . 5 ,  i t  i s  away from 
zero . 

What are the effects of the fluid present in the above prob lem? 
Since critical  negative pressure , e . g . , the cavitation pressure , is the criter
ion of injury in this mode l ,  how is the pressure affected by the system parame
ter variation? Is the reduction of pressure re lated to the changes in accelera
t ion of the container? How val id  is the prevalent notion that as the container 
acceleration is reduced by a protective device , the injury potential is corres
pondingly reduced? These are some of the questions which we hope to answer .  

Using the exact so lution as the standard o f  comparison , the fo l l owing 
change of variable scheme was used .  To begin the numerical solution , define the 
fol lowing new variables : 

V :: Ut ; S :: �X ; W :: �t ( 1 7 )  

The governing wave equation ( 5 )  becomes 
vt + 

wt = sx ( 1 8 )  

Since cross differentiat ion must apply,  i . e . ,  �xt = �tx ' we  get 

The 

and 

s :: w ( 1 9 )  t X 
initial condition (6) becomes 

s (x , O) = u (O )  = w (x , O) = O } 
V :: V .  

(20) 

The boundary condi tion (7) is rewritten as w ( O , t) = w ( l , t )  = s (� , O) = 0 ( 2 1 )  



Equation (9) is transformed into 

n2u + 2 �nv + vt 
= 2µs ( O , t) 

2 

(22)  

3 4 wt 

Figure 2 .  Acce leration-time response for equivalent rigid-body rnodel 
C .  Finite-Difference Analogs 

Set up a finite difference grid as shown in Figure 3. Using centered finite  
difference analogs , see for example the description in Von Rosenberg [9 ] , we  get 

as  (at) i-!z,n+!z 
"' 

Cls  C ax) i-!z,n+!z 
"' 

.!_ i ,n+l [s -

2 tit 

.!_ i , n+l [s -

2 tu 

s . 1 ,  n + 

s . 1 1 , n+ 

s . 1 1 - s . 1 ] 1 - ,n+ 1 - , n  
L\ t 

+ 
5 i , n - 5i - 1 ,n] 

f:::.x 

S imi lar analogs exist  for w .  
Since v i s  a function o f  t ime only , w e  get 

The analogs to (18) and ( 1 9 )  become 

and 

fv - V ] t n+l  
f:::.t 

n 1 fwi ,n+l - wi , n  + 
wi - 1 ,n+l  - wi - 1 ,n] + 2 l ßt L\t 

= 

1 f5i ,n+l - 5i - 1 ,n+l + 2 t tix 
5i ,n - 5i - l , n] 

L\x 

(23 )  

( 24 )  

(25)  

(26) 
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N + 1 X 
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2 

1 

1 2 
X = 0 

Figure 
1 
2 
[s .  1 - s .  1 , n+ 1 , n  

L'it 

w .  - w J 1 , n i - 1 , n  
t:,,x 

X 

X 

3 .  

+ 

initial and boundary 

s . = W .  for a l  1 1 , 0  1 , 0  
w = 0 for all  n l , n 
w = 0 for all  n L , n  

s L , n  0 for all  n 

X X X X X X X 
+ ( " 1 1 ) 1 -Yi , n+Yi 

X X X X X X X 

X (I - 1) (I) (I + 1) L - 1 L 
X = 1/2 

Grid for centered Finite-Difference Method 
5 i - l , n+l - 5 i - l , n]= l_ [wi , n+ l  

L'it 2 
- w 
t:,, x 

conditions ( 13)  and ( 1 4) become : 
i and u 0 , V = V 0 0 

and i :;: L at X = : } and i = L at X = 

i - 1 ,n+l + 

( 27 )  

(28)  

(29)  

Simi larly , (22)  becomes 

and 

n2u + 2 r;Qv 1 + rcv - vn) /tit] n+l n+ L n+l 
= 2µ s .  1 for al l  n 1 , n+ (30) 

v 1 
= (u 1 - u ) /t:,,t ,  for all  n ( 3 1 )  n+ n+ n 

To minimi ze truncation error ,  we set t:,,t = t:,,x in (26) and (27) . Adding these 
two equations and dividing by 2 ,  one obtains 

S .  + W . l 
= S .  + W .  + V  - V l (32)  1 - l , n+l  1- l , n+ 1 , n 1 , n n n+ . 

Subtracting these two equations and dividing by 2 ,  yields 
- S + W = - S .  l + W . l + V  - V i , n+ l i , n+l 1 - , n  1 - , n  n n+l . 

Advancing the i index in (32) by unity , we get 

(33) 



S . l + W . 
l = S . l + W .  + V  - V i , n+ i , n+ i+ ,n  i+ l ,n n n+l 

Adding (33) and (34) and dividing by 2 ,  gives 

w . l = - s . l + s . 1 + w . 1 + W . 1 i , n+ i - , n  i +  , n  i- , n  i +  , n  

Subtract (33) from (34) and divide by 2 gives 
s .  l 

= (s . 1 + s . 1 - w . 1 + w . 1 ) / 2  i ,n+ i- , n i+ , n  i - , n  i +  ,n 

(34) 

/ 2  + V - V n n+l (35) 

(36) 

Thus , (35) and (36) specify the values of s .  1 and w . 1 from known values at i , n+ i ,n+ 
the previous time step . These apply only for 2 < i < L - 1 .  The boundary con-
dition gives w1 1 

= 0 ,  then equation (34) yie lds ,n+ 

s l , n+l = s 2 ,  n + w -2 ,n  w + V - V l , n+l n n+l (37) 

If i = L at X = 1 ,  the boundary condit ion gives w = 0 and equation (33) can L ,n+l  be used to give 

5 L ,n+l 
= s -L- 1 ,n wL- 1  n + 

' 
w - V + V (38) L , n+l n n+l 

I f  i = L at X = � '  the boundary condition gives s = 0 and equation (33) can L ,n+l be used to obtain 

W = - S + W + S + V - V L ,n+l L-1 , n  L- 1 ,n L ,n+l n n+l (39) 

known . 
Al l the values of w and s can be obtained if  the value of v 1 is n+ This  is done through the ordinary d ifferential equation . From 

we get 

un+l 
= un + (öt) vn+l (40) 

Substituting (37)  and (40) into (22) we get [Q2 (öt) + 2i;;Q + ( 1/öt) + 2µ] vn+l = [( l /öt) + 2µ] vn + 

Equation (41 )  

+ 2µ  [5 2 ,n + w2 , n  - wl , n+l] 
yields v 1 from all  known values . n+ 

( 4 1 ) 

The problem is thus so lved without even the need for the solution of 
simultaneous equations or iterations . 

To summarize the expl icit procedure : (a) After the initial and 
boundary condit ions are read into the program , v 1 at the new time step is comn+ 
puted from (41 ) . (b) Compute u 1 from (40) . (c) s 1 1 is next calculated n+ n+ 
from (37) and wL 1 from (39) or sL 1 from (38) . td) Final ly , the interior ,n+ ,n+ 
values of s . 1 and w .  1 are computed in  a loop from equations (35) and (36) 

. i , n+ i , n+ 
respectively. 

The acceleration can be computed from 

an+l = (dv/dt)n+l = (vn+l - vn) /öt ,  ( 42)  

which i s  first order correct . From the exact so lution we found that the 
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coefficient of the first truncated term, da/dt , i . e . , the changes in the s lope 
of the acceleration of the container, is large near its peaks and valleys making 
it necessary to have smal l  t ime steps of 6t = 0 . 00 1  in order to have acceptable 
accuracy up to the third signi fi cant figure . Smal l  t ime steps increase the time 
of computation , so a higher-order correct analog was devised to improve the ac
celeration computation . From the definition of the displacement , velocity and 
acceleration we obtain the expansion 

= U + V  1 (6t/ l ! )  n n+  an+l (tit2/2 ! )  + (da/dt)n+l (tit 3/ 3 ! )  . . . .  (43) 

V 1 = V + a 1 (6t/ l ! )  - (da/dt) l (At2/2 ! )  + . . . . . . . . . . . . . . . .  (44) n+ n n+ n+ 

(da/dt) 1 = (a  1 - a ) /öt + (d2a/dt2) 1 öt/2 . . . . . . . . . . . . . . . .  (45) n+ n+ n n+ 
Substituting (45) into (44) , we get 

v 1 = v + (a 1 + a )  tit/2 - (d2a/dt2) 1 (tit 3 / 1 2 )  + . „ „ „ . .  (46) n+ n n+ n n+ 
In turn , we subst itute (46) into (43) to get 

un+l = un + vn (At) + an (At2/3) + an+ l  (At2/6) 

- (d2a/dt2) l (At4/24) + . . . . . . . . . . . . . . . . .  . n+ 

Equati on (22 )  is  now written in this new scheme as 
Q2u + 2 sQv 1 + a = 2µ s2 + w - w + v - v n+l n+ n+l ,n 2 , n  l ,n+l n n+l 

( 4 7) 

Substituting the third-order correct (46) and fourth-order correct (47) into 
(48) and after some s impl ification yields [Q2 (At2/6) + (sQ + µ) At + i] an+l = [- Q2] un + 

t Q2 At - 2sQJ vn + [ - Q2 (At2/3) - (sQ + µ )  At J an 
+ 2µ [s + w - w J (49) 2 , n  2 , n  l , n+l 

Equation (49) is our des ired result , which is incorporated into the computations 
in the fol lowing way . The steps out l ined prior to the improved scheme for ac
celeration is fo l l owed for one time step only ,  i . e . , the terms on the right hand 
side of (42) are now known values after one time step . Substituting (49) for 
(4 1 )  in the loops completes our numerical procedure . In short , the first-order 
correct acce leration is used only to start the program , then the higher order 
correct analogs impl icit in (49) are used thereafter . The t ime step for accept
able  accuracy was reduced from 0 . 001 to 0 . 0 1 .  Taking the usual rule  of thumb 
that the running t ime is proportional to the square of the before and after step 
size  rat io ,  we have thus achieved a 100-fold reduction in computational time 
with the improved acce leration procedure . 

Results and Discussion 
A .  Biomechanical Parameters 

As was noted earlier,  the input parameters relevant to this model 
vary considerably depending on the assumptions . We have tried to key our numer
ical computations to available  experimental results : 



(a) The mass parameter µ is the ratio of the fluid to container mas s .  As 
was discussed previous ly,  it ranged from 0 . 5  to 5 .  When a helmet i s  worn , its 
value decreases to below 0 . 5 .  

(b) The stiffness parameter K is the ratio o f  the relative stiffness of the 
lumped container spring constant and the effective spring constant of the com
pressible  fluid . Fol lowing Hayashi [ 4 ] , if  B = 200 kg/mm2 , A = 200 mm2 and i = 
150  mm, we get kf = BA/i � 267 kg/mm. The container stiffness used by Hayashi 
was k = 5 kg/mm , al though there is considerable  doubt as to its true value . An 
order of magnitude est imate gives an approximate value of 5/267 � 0 . 0 1 8 7 .  We 
have varied this parameter in our study . When a helmet is  worn or padding add
ed ,  we are placing another spring in series with the one for the normal head . 
The equivalent spring constant is less than the smal ler of the two spring con
stants . 

(c) The damping factor s is the lumped container damping to its critical 
damping coefficient . From wel l -known vibration theory , if  s = 1 ,  the system is 
critica l ly  damped ,  s < 1 ,  underdamped and s > 1 ,  overdamped . Stalnaker et al . 
[ l ]  conj ectured that under vibration and impact the head acts to critically damp 
the brain . However , their own impedance data indicated i t  is an underdamped 
system with s = 0 . 05 for the cadaver head to s =  0 . 125  for the Macaca Mulatta .  
We have done a parametric study on s · When another damper is  placed in series 
with the one in place,  the equivalent damping is  less than the smal lest of the 
two , i . e . , the action of dampers in series is the same as a similar combination 
of spring s .  

(d) The velocity ratio V compares the speed of the container prior to impact 
to the wave speed in the fluid .  Because of  the almost incompressibi l i ty of  the 
fluid, its wave speed is a high 150  m/sec . 

B .  Numerical Results 

The results are al l presented in dimensionless form . Figure 4 is an 
isometric view of the pressure time history at different values of x for the 
mas s ,  stiffness and damping ratios of s = 0 . 05 ,  K = 0 . 0 1 and µ = 0 . 5  respective
ly. We note that the mean pressure variation is  almost l ike a s ine wave . The 
range pressure , i . e . , the fluctuations about the mean , are re latively smal l .  
The maximum contrecoup negative pressure is P = - 0 . 029 ,  which occurs at time 
t = 23 . 2 .  Rebound occurs at approximately t = 54 . 5  when the displacement 
changes s ign .  I f  the mean and range pressur�s are computed between the peak at 
t = 23 . 2  and the next val ley at t = 24 . 10 ,  we get P = ( 0 . 0290 + 0 . 0253) / 2  = 
0 . 0271 and P = (0 . 0290 - 0 . 0253) / 2  = 0 . 00185 .  Oth�r isometric figures indicate 
that the maximum pressure occurs at contrecoup and decreases monotonically to 
zero at x = 0 . 5 ;  we have , therefore , not continued these isometric views in our 
parametric  studies of the pressure fie ld ,  but rather have just given the contre
coup result  with the understanding that s imi l ar qualitative results  as given in 
Figure 4 are obtained .  

Figure 5 shows the contrecoup pressure and the container acceleration 
for s = O . l ,  K = 0 . 01 and µ = 0 . 5 ,  i . e . , the damping is doubled that shown in 
Figure 4 .  The solid l ine in Figure Sb going through the peaks and val leys indi 
cates that rigid-body acceleration as computed from ( 14 )  with the same system 
parameter values . Note the s imi l arity of this l ine to the mean pressure values 
(corresponding to the incompressib le  case?) in the curve for contrecoup pres
sure . 

Figure 6 shows the contrecoup pressure and its corresponding contain
er acce leration for s = 0 . 5 ,  K = 0 . 01 and µ = 0 . 5 .  
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Figure 4 .  An isometric view of the pressure field as a function o f  time 
The effect of a monotonic damping increases as shown in Figures 4 - 6 

indicate c learly that : (a) An increase in the damping ratio increases the 
range pressure and acceleration, i . e . , the peaks and val leys become more promi
nent . (b) The peak acceleration and contrecoup pressure shift c loser and 1 
closer to the origin of the t ime axis as damping is  increased . For [�/ ( 1  + µ)�] 

1 
> 0 . 5 ,  both maximums occur at the origin . For [ s / ( l  + µ) �] < 0 . 5 ,  both maximums 
are away from the origin . These changes are in complete quali tative accord with 
the results of  the s imple spring-mass -dashpot model as shown in Figure 2 .  C e) 
The simple  osc i l lator model overestimates the contact duration for [ s/ (l + µ)�] 
> 0 . 5  but for [s/ ( l  + µ)�] < 0 . 5  the error is relatively smal l .  The reason for 
this error i s  attributable  to the higher peak velocities attained by the con
tainer due to the presence of the fluid, allowing more energy to be diss ipated 
in the damper and thus a quicker spring back .  

The other important parameters in  our problem besides damping i s  the 
mass and stiffness ratio or µ and n2 = K µ .  A 10 -fo ld change on either s ide of 
the results given above (n2 = 0 . 005 and µ = 0 . 5 ) wi l l  delineate the effects of 
changes in these parameters . Figure 7 shows the simulation of the experimental 
impact of fluid-filled human skulls , where µ = 5 ,  K = 0 . 00 1  and s = 0 . 5  or n2 = 
. 005 , e . g . , Roberts et al . [ 6 ] . Note the high peaks and valleys in both the ac
celeration and pressure . Even though the amplitude decreases with t ime , the ex
cursions are s t i l l  considerab le at the t ime of rebound.  Figure 8 compares the 
effects of the mass ratio change even though n2 = Kµ is unchanged .  The particu
lar cases shown compare (a) µ = 0 . 5 ,  K = 0 . 1  and � = 0 . 5  with (b) µ = 5 . 0 ,  
K = 0 . 01 and � = 0 . 5 .  We note that both the absolute and range pressures are 
much higher in (a) than in (b) .  Thus , an increase in µ and a decrease in K and 



s appear to  lower the contrecoup pressure . What happens when one wears a pro 
tect ive helmet?  The µ i s  l owered because m is increased , the K and s are lower
ed .  The ideal he lmet or padding for direct head impact i s ,  therefore , one which 
is as l ight , as soft and as inviscid as possib l e .  
C .  Discuss ion and Recommendations 

The fundamental problem of head protection is to m1n1m1 ze the intra
cranial pressure response when subj ected to a transient excitation . One very 
obvious improvement in the model is to inc lude the real ity of dissipation in the 
fluid .  We  expect that many of the peaks and val leys in  the pressure and acce l 
eration would damp out when this i s  clone . However,  the fluctuations i n  the 
smal l -time region would probably be retained but attenuated .  

From the various figures ,  one can assert that there exists a shape 
s imi larity between the acceleration and countercoup pressure curves . This is 
not surprising s ince the acceleration of the container can be considered as an 
input to the wave equation in � '  see (6) . Once the wave enters the fluid it  is 
propagated without di spersion or attenuation unti l  it has traversed the length 
of the container and i s  reflected.  The interaction with the container occurs 
only at the boundaries . The contrecoup pressure in turn determines the contain
er dynamics through (9) . 

We are now in a position to assess the question : In a given impact , 
if  the measured maximum acceleration is lower by changing one of the parameters , 
what is the effect on contrecoup pressure? The fol lowing tab l e ,  taken from the 
graphs , is instructive : 

I tem µ K s (A/V)max .  [ P (O , t ) /V] max . 

1 )  0 .  50 0 . 01 0 . 5  0 . 07 0 . 05 

2 )  5 . 00 0 . 01 0 . 5  0 . 1 7 0 . 05 

Comparison between 1 )  and 2 )  show that if  µ i s  decreased 10 -fo ld ,  the 
maximum utt is decreased dramatical ly and yet the corresponding P (O , t) is un
changed . The comrnon notion that if  one can decrease the container acceleration 
markedly then the probabi l i ty of inj ury is correspondingly reduced needs modifi
cat ion. This  i s  in agreement with the result  given by Liu [ 1 0 ]  that the stress 
(or pressure or strain) is the criterion of inj ury and not the acceleration .  

A nonl inear optimi zation problem obvious ly exists here , i . e . , given 
certain constraints on either the a l lowable  deformation , the weight and the dis
s ipation of the helmet , etc . , what force-deflect ion functions for the spring , 
i . e . ,  f (u), and force -velocity functions of the damper , i . e . , f (ut ), would yield 
the minimum contrecoup pressure? These considerations are in progress and wi l l  
b e  reported in the future .  
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