
Abstract Numerical human body models that can predict occupant head and neck responses are essential 
for the development and assessment of motor vehicle safety systems. Including the contribution of neck muscle 
responses is needed to improve model predictions, in particular during simulated pre-crash manoeuvers. While 
a general purpose model that can predict head-neck kinematics in various pre-crash conditions (e.g. emergency 
braking and steering) is needed most current models have been limited to predictions of longitudinal motion (e.g. 
during emergency braking). We developed a method for simulating muscle recruitment in a finite element human 
body model for omnidirectional head-neck kinematics predictions. A neural control scheme that uses kinematics 
and muscle length feedback to determine the activation level in individual muscle elements was implemented. 
The control scheme included a novel approach to determine load sharing between muscles based on 
experimental data from human subjects in dynamic conditions. Multidirectional 1 g loading conditions were 
simulated to assess the effect of muscle recruitment on head and neck kinematics in multiple directions and to 
evaluate the predicted spatial tuning of recruitment for selected muscles. Simulation results demonstrate that 
including both kinematics and muscle length feedback reduces head and internal neck motion induced from 
external 1 g loading.  

Keywords Active muscle, feedback, head kinematics, human body model, neck kinematics. 

I. INTRODUCTION

Detailed numerical models of the human body are increasingly used by researchers and the automotive 
industry for the development of safety systems. For example, human body models (HBMs) can be used to predict 
occupant head and neck kinematics preceding and during crashes to study the influence of advanced seatbelt 
designs on the occupant response [1,2]. Studies indicate that occupant dynamics during vehicle pre-crash 
manoeuvers may influence occupant crash kinematics [3–5]. To improve crash kinematics predictions, HBMs 
should simulate occupant postural responses and the associated muscle recruitment strategies during vehicle 
manoeuvers, such as emergency braking and steering, which may proceed the crash. 

Muscle recruitment is complex and specific kinematics can be achieved with different muscle recruitment 
strategies. Various methodologies for simulating neck muscle recruitment in HBMs for crash simulations have 
therefore been proposed in the past. Several models introduced the effect of reflex muscle responses by applying 
maximum or close to maximum activity at a pre-defined time in the simulation [6–11]. Although this approach 
may be representative of responses during short duration impacts, it is less applicable for simulating posture 
maintenance during pre-crash manoeuvers. Other models used optimization to determine muscle activity during 
impacts [3,12–14]. However, as pointed out in [15] the objective functions used (such as minimizing energy, 
muscle forces, stiffness or total work) may not be relevant to impact scenarios and that muscle recruitment in 
cases where efficiency is not the main objective has not been adequately explored. Muscle recruitment 
determined from normalized electromyogram (EMG) measured in volunteer experiments has been used in whole 
body HBMs and lower extremity models [16–20]. A major drawback of using EMG to prescribe muscle activity is 
the need for collecting volunteer data for each new load scenario of interest. Methods with pre-defined muscle 
activity are case specific and thus have limited applicability for the development of safety systems as occupant 
interaction with new restraint systems is likely to change muscle activity. 

Recent models have proposed closed-loop control where muscle activation is regulated based on sensory 
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information about the current state of the model to better represent the feedback mechanisms of the central 
nervous system (CNS) [2,21–29]. The benefit of including physiological feedback loops in neural control schemes 
in HBMs is the potential ability to predict responses in a wide range of pre-crash scenarios as the level of muscle 
activation can be continuously adjusted based on changes in the external environment (e.g. magnitude and 
direction of acceleration). Closed loop control was first implemented with multi body HBMs using Proportional-
Integral-Derivative (PID) controllers that applied torques to regulate the joint angle at each individual vertebral 
joint [21,22,29]. Subsequently, multi body and finite element models with muscle elements have implemented 
PID controllers that use head kinematics feedback to regulate neck muscle activity in simulations of pre-crash 
scenarios [2,21–26,28]. Head kinematics based closed-loop control emulates vestibular feedback of the CNS but 
omits contribution from muscle spindle feedback. Control with only head kinematics feedback does therefor not 
consider internal neck kinematics which may result in non-physiological vertebral movement. Simulations have 
shown that during small oscillations, while head kinematics feedback was a major contributor to stabilising the 
head and neck, incorporating muscle length (spindle) feedback was necessary to stabilise individual neck joints 
and prevent neck buckling, indicating the importance of including both feedback loops [28]. Combined kinematics 
and muscle length feedback and the influence of muscle length feedback on neck kinematics has not been well 
studied in loading conditions that generate head displacements of similar magnitude to what can be expected 
during pre-crash manoeuvers. 

Most current HBMs that simulate pre-crash occupant kinematics have been applied in longitudinal conditions, 
where anterior-posterior movement was induced [2,21–25,27]. For HBMs to predict occupant head movement 
in a wide range of pre-crash scenarios models must be able to respond to excitation in multiple directions. A 
major challenge in simulating omnidirectional head movement is presented by the uncertainty of how load is 
shared between more than 25 neck muscle pairs. How the CNS in humans determines the relative contribution 
of individual neck muscles during dynamic conditions from external perturbation has not been adequately 
explored and experimental data is scarce. Consequently, no HBMs that can simulate and predict omnidirectional 
pre-crash head kinematics are currently available.  

In this study, we implemented a neural control scheme for regulating neck muscle activity in a finite element 
HBM. The proposed scheme included head kinematics and muscle length feedback with muscle load sharing 
definition based on in vivo data on neck muscle recruitment patterns from a dynamic sled experiment [30]. We 
studied the model’s capability to counteract induced motion from inertial loading in multiple directions and the 
spatial tuning of muscle recruitment. The objective of this study was to explore how the different feedback loops 
in the neural control scheme influenced head-neck kinematics and muscle recruitment. This insight may help 
guide future modelling efforts and collection of experimental data for model validation. 

 

II. METHODS 

A 50th percentile male, whole-body finite element HBM (Fig. 1A) was used in this study. It was a modified 
version of the Total Human Model for Safety (THUMS) version 3.0 (Toyota Central R&D Labs., Inc., Nagakute, 
Aichi, Japan) published in Östh et al. [25]. The skin material properties were modified according to a recent model 
developed for low-g simulations [31]. The extremities were omitted to reduce computational time. All pre-defined 
muscle elements were removed and 188 one-dimensional Hill-type elements were added to represent the 28 
neck muscle pairs listed in Table I (detailed description in Table AI in the Appendix). The activation levels of 
individual muscle elements were determined by the neural control scheme described below. All simulations were 
performed with the finite element solver LS-DYNA MPP v971 R8.0.0 (LSTC, Livermore, CA) using standard 
keywords.  

 

Reflex recruitment model 
The reflex recruitment model consisted of a closed-loop system of the head-neck complex with neural control 

that generates muscle activity in the Hill elements (Fig. 2). The neural control consisted of two reflex loops, 
representing neural feedback from the vestibular system and muscle spindles. The vestibular control loop uses 
kinematics based feedback and recruits pre-defined groups of muscles to maintain head posture, while the 
muscle spindle loops regulate individual muscle element lengths. The kinematics feedback consisted of sensory 
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information about the net angular deviation, 𝜃𝜃, of the head-neck vector (defined as the vector from T1 vertebral 
body geometrical centre to head centre of gravity (CG)) from initial position (see Fig. 3) and the corresponding 
angular speed, 𝜃̇𝜃, referred to as kinematics feedback (KF). Kinematics feedback was multiplied by constant gains, 
𝑘𝑘𝜃𝜃  and 𝑘𝑘𝜃̇𝜃, adopted from an earlier study with the current HBM [2]. These gains were obtained by tuning using 
optimization methods to one set of volunteer tests and validated with respect to another set of test data [2]. 

 
 

 
Fig. 1. A) The THUMS finite element model depicted here in the global coordinate system. B) Illustration of the 
model’s initial position in the multidirectional response simulations for all five conditions i)-iv) in different views, 
such that direction of the gravity field and the local x-axis, x', are aligned in the figure. 
 

TABLE I 
MUSCLES REPRESENTED IN THE MODEL (SINGLE SIDE), NUMBER OF LINE ELEMENTS PER MUSCLE, AND THE 

RESPECTIVE EXPERMENTAL EMG SPATIAL TUNING PATTERN ASSIGNED TO EACH MUSCLE.  

Muscle  

Nr. of 
elem. 

Assigned 
pattern*   

Muscle  

Nr. of 
elem. 

Assigned 
pattern* 

Sternocleidomastoid (SCM) 2 

SCM 

 Semispinalis capitis (SCap) 5 

SCap 
Scalenus posterior 3  Rectus capitis posterior minor 1 
Scalenus medius 6  Rectus capitis posterior major 1 
Scalenus anterior  4  Obliqus capitis superior 1 
Rectus capitis anterior 1  Semispinalis cervicis (Scerv) 4 

Scerv 

Sternohyoid (STH) 2 

STH 

 Semispinalis thoracis 2 
Sternothyroid 2  Splenius capitis** 6 
Omohyoid 1  Splenius cervicis  3 
Longus colli superior oblique 3  Erector spinae longissimus catpitis 8 
Longus colli vertical  4  Erector spinae longissimus cervicis 5 
Longus colli inferior oblique 2  Erector spinae iliocostalis cervicis 3 
Longus capitis 4  Multifidus cervicis (CM-C4) 3 CM-C4 
Levator scapulae (LS) 4 LS  Multifidus cervicis (CM-C6) 9 

CM-C6 
Trapezius (Trap) 3 Trap 

 Obliqus capitis inferior 1 
  Rectus capitis lateralis 1 

*The assigned patterns define the direction and muscle specific weights, 𝑤𝑤𝑖𝑖, in Equation (1). The assigned experimental 
tuning patterns from [30] are shown in Fig. A1 in the Appendix. 
**Splenius capitis was assigned the same pattern as semispinalis cervicis due to ambiguity in the experimental findings for 
this muscle.  
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The KF loop generates a single control signal, referred to as the excitation signal, 𝑢𝑢𝐾𝐾. To define the load sharing 
between the multiple neck muscles, that is, the relative contributions of each muscle in response to the excitation 
signal, 𝑢𝑢𝐾𝐾, the 28 muscle pairs were split into 16 groups (eight on each side) and a weighting function, 𝑤𝑤𝑖𝑖(𝛼𝛼), 
defined for each group 𝑖𝑖. The variable 𝛼𝛼 varies with head motion and is the angle of the projection of the head-
neck vector in the horizontal plane (see Fig. 3). The muscle group specific excitation signal, 𝑢𝑢𝐾𝐾,𝑖𝑖, which defines 
the relative excitation of each muscle group was then obtained by 
 

𝑢𝑢𝐾𝐾,𝑖𝑖 = 𝑤𝑤𝑖𝑖(𝛼𝛼)𝑢𝑢𝐾𝐾 (1) 

 
where 𝑖𝑖 = 1, … ,16 denoting the number of muscle groups. The angle 𝛼𝛼 varies over time and was updated in every 
time step during simulation. Fig. 3 shows a schematic of the angle 𝛼𝛼 and illustrates how the weights of each 
muscle group, 𝑤𝑤𝑖𝑖, were determined based on 𝛼𝛼 and experimentally derived EMG spatial tuning patterns from 
dynamic sled tests [30]. In the experiment seated volunteers were exposed to 1.55 g perturbations in eight 
directions (0°, ±45°, ±90°, ±135°, 180°) and EMG in eight left neck muscles was measured with intramuscular 
electrodes. The corresponding muscles in the head-neck model were assigned the respective experimental 
patterns, normalised by the highest amplitude for any muscle (0.886 for semispinalis capitis, Fig. A1), see Table I. 
The remaining modelled muscles, for which no experimental data was available, were grouped with and assigned 
the pattern of a muscle of similar anatomical function (Table I). The muscles with the same assigned pattern act 
synergistically and are recruited as a group in response to a positive 𝑢𝑢𝐾𝐾  signal. A total of 𝑖𝑖 = 16 muscle groups, 
eight on each side, to each a unique experimental pattern was assigned was achieved by assuming symmetry 
between left and right side muscle responses and mirroring the experimental patterns around the 0° - 180° axis 
to generate patterns for right sided muscles (Fig. A1). Signal transmission and neural processing times were 
expressed as a time delay, 𝑇𝑇𝐾𝐾  = 20 ms (estimated based on [32]). 
 

 
Fig. 2. Schematic illustration of the neural control scheme for regulating reflex neck muscle activity based on both 
kinematics and muscle length feedback. Thick arrows represent a single signal, dotted arrow group specific 
signals (no. = 16) and thin arrows muscle specific signals (no. = 188). 
 
 

Muscle length feedback (MLF) was implemented for each muscle element by sensing its absolute length, 𝐿𝐿, 
and lengthening velocity, 𝐿̇𝐿. The excitation signal, 𝑢𝑢𝑀𝑀𝑀𝑀,𝑗𝑗 , was generated if the current length exceeded the 
reference length, 𝐿𝐿0, representing the element’s length at loading onset. MLF was only triggered during dynamic 
loading. Muscle length feedback was multiplied with constant gains, 𝑘𝑘𝐿𝐿 and 𝑘𝑘𝐿̇𝐿 , where 𝑘𝑘𝐿̇𝐿/𝑘𝑘𝐿𝐿 = 0.1 [33]. Equal 
gains were used for each muscle element. Neural transmission and processing time was assumed as a time delay 
of 𝑇𝑇𝑀𝑀𝑀𝑀 = 10 ms (estimated based on [34]). 
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Fig. 3. The schematic shows how head-neck vector (head CG to T1) angle, 𝜃𝜃, was defined and how 𝛼𝛼 was 
determined using the head-neck vector projection in the horizontal plane for an arbitrary point in time, 𝑡𝑡𝑛𝑛, (time 
zero denoted 𝑡𝑡0) exemplified for right oblique flexion of the head-neck. The polar plots show how the weights, 
𝑤𝑤𝑖𝑖, were determined for a given 𝛼𝛼 for two exemplar muscles, left sternocleidomastoid (SCM) and semispinalis 
capitis (SCap). The red curves are the experimental spatial tuning curves for SCM and SCap from [30], also shown 
in Fig. A1 in the Appendix.  
  
 

When both KF and MLF were included (referred to as KMLF), the excitation signal of each muscle element 
assumed a linear combination of the respective KF and MLF signals 
 

𝑢𝑢𝑗𝑗 = 𝑢𝑢𝐾𝐾,𝑖𝑖 + 𝑢𝑢𝑀𝑀𝐿𝐿,𝑗𝑗  (2) 

 
where 𝑗𝑗 = 1, … ,188 denotes the total number of muscle elements. The 𝑢𝑢𝑗𝑗  therefore represents an excitation 
signal specific to every muscle element. Muscle activation dynamics from excitation signal, 𝑢𝑢𝑗𝑗, to activation level, 
𝑁𝑁𝑎𝑎,𝑗𝑗, were modelled as a set of two first order differential equations as described by [35] 
 
 

                                                              
𝑑𝑑𝑁𝑁𝑒𝑒,𝑗𝑗

𝑑𝑑𝑑𝑑
=
�𝑢𝑢𝑗𝑗 − 𝑁𝑁𝑒𝑒,𝑗𝑗�

𝑇𝑇𝑛𝑛𝑛𝑛
 (3) 

𝑑𝑑𝑁𝑁𝑎𝑎,𝑗𝑗

𝑑𝑑𝑑𝑑
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⎪
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𝑇𝑇𝑛𝑛𝑛𝑛,𝑎𝑎
, 𝑁𝑁𝑒𝑒,𝑗𝑗 ≥ 𝑁𝑁𝑎𝑎,𝑗𝑗

�𝑁𝑁𝑒𝑒,𝑗𝑗 − 𝑁𝑁𝑎𝑎,𝑗𝑗�
𝑇𝑇𝑛𝑛𝑛𝑛,𝑑𝑑

, 𝑁𝑁𝑒𝑒,𝑗𝑗 < 𝑁𝑁𝑎𝑎,𝑗𝑗

 (4) 

 
 
The first system, Equation (3), represents excitation dynamics where 𝑁𝑁𝑒𝑒,𝑗𝑗  denotes an intermediate neural 
excitation level. The second system, Equation (4), represents the contraction dynamics of the muscle. The two 
conditions in Equation (4) represent activation and deactivation where the time constant for deactivation, 𝑇𝑇𝑛𝑛𝑛𝑛,𝑑𝑑, 
is larger than for activation, 𝑇𝑇𝑛𝑛𝑛𝑛,𝑎𝑎. The time constants, 𝑇𝑇𝑥𝑥,𝑦𝑦, and other control parameters are summarised in 
Table II. Activation levels were constrained between a predefined minimum contraction level, 0.05𝑤𝑤𝑖𝑖, and 
maximum contraction of one. The minimum contraction level was chosen based on the highest average neck EMG 
recorded in volunteers during quiet sitting while riding as passengers in a car, 4.7±4.1 %MVC (percent of maximum 
voluntary contraction), reported in [36]. 
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TABLE II 
SUMMARY OF FEEDBACK GAINS, TIME DELAYS, AND TIME CONSTANTS. 

KF gains 𝑘𝑘𝜃𝜃 1.3  
𝑘𝑘𝜃̇𝜃 470  

MLF gains 𝑘𝑘𝐿𝐿 0.5  
𝑘𝑘𝐿̇𝐿 0.05  

Time delays 𝑇𝑇𝐾𝐾 20 ms  [32]  
𝑇𝑇𝑀𝑀𝑀𝑀 10 ms [34] 

Time constants 
𝑇𝑇𝑛𝑛𝑛𝑛  35 ms  
𝑇𝑇𝑛𝑛𝑛𝑛,𝑎𝑎 10 ms  
𝑇𝑇𝑛𝑛𝑛𝑛,𝑑𝑑 40 ms  

 
 
Multidirectional response and spatial tuning verification 

To explore the capability of the proposed neural control scheme to generate muscle recruitment patterns and 
to verify the spatial tuning of recruitment, simulations were performed where inertial head motion was induced 
in various directions. In physical terms, the simulations replicated a setup where a subject would be lying and the 
head support rapidly removed without warning. The HBM was exposed to instantaneously applied gravity loading 
in five simulations, varying the direction of the loading in the transverse plane at intervals of 45°, see Fig. 1B. The 
applied load in each of these five conditions resulted in neck: i) flexion, ii) right oblique flexion, iii) right lateral 
bending, iv) right oblique extension, and v) extension. The minimum contraction level was reduced to 0.03𝑤𝑤𝑖𝑖 
based on the assumption that neck muscle activity is likely lower while lying with the head supported compared 
to upright posture with unsupported head. The HBM was constrained in space below the T3 vertebra throughout 
the duration of the simulation in all conditions.  

To study the effect of each reflex loop on the model response, the five conditions were simulated with KMLF, 
only KF, and only MLF. This was compared to the passive model response without muscle activation (𝑢𝑢𝑗𝑗 = 0). An 
additional simulation was run to test the ability of the neural control to stabilise the head in an upright posture 
against gravity for 2 s. The minimum contraction level was 0.05𝑤𝑤𝑖𝑖 in this simulation. As MLF triggers during 
dynamic loading this simulation with KMLF is effectively KF only. Model kinematics were assessed by comparing 
simulated head CG translational displacements and peak rotations as well as selected vertebral rotations when 
applying KMLF, KF, and MLF. Model head displacements are reported in local coordinate systems which share an 
origin with the global coordinate system but are rotated so that the new x-axis, x', is aligned with the direction of 
loading (Fig. 1B). Additional simulations were run to verify the isometric strength of the muscles. These results 
are reported in the Appendix.  

The spatial tuning of muscle recruitment generated by KF was verified by comparing the simulated responses 
to the implemented experimental tuning patterns from [30]. The influence of MLF on spatial tuning was explored 
by comparing the tuning curves of the three neural control schemes, KF, MLF, and KMLF. Tuning curves were 
constructed by extracting the muscle activation level of the elements representing eight left sided muscles (SCM, 
STH, LS, Trap, SCap, SCerv, CM-C4 and CM-C6, see Table I) at 110 ms after loading onset in each loading direction. 
Based on model symmetry, activation levels of these left sided muscles in left oblique flexion, left lateral bending, 
and left oblique extension was assumed to be equal to the corresponding right sided muscle activity in the ii)-iv) 
conditions.  
 

III. RESULTS 

Neural control with KMLF reduced head displacement in all loading directions compared to the passive HBM, 
Fig. 4. Peak displacements were generally larger with KF or MLF only (12 – 20 mm and 0 – 9 mm larger, 
respectively). For instance, during induced flexion (0° loading direction in Figs. 4 and 5) peak displacement was 
46 mm with KMLF, compared to 58 mm and 51 mm with KF and MLF, respectively. MLF reduced head 
displacement more than KF and for 45° and 90° loading directions MLF resulted in peak displacement equal to 
KMLF, 46 mm and 57 mm, respectively. Simulation of upright posture in gravity resulted in a stable posture with 
a net 7 mm rearward head CG displacement and 0.3° Y-rotation (flexion).  

The spatial tuning of muscle recruitment with KF were verified and are shown in Fig. A1 in the Appendix. The 
resulting spatial tuning patterns with KMLF, KF, and MLF are illustrated in Fig. 5. Including muscle length feedback, 
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the KMLF resulted in similarly shaped spatial tuning patterns, except for STH and Trap. Muscle length feedback 
increased muscle activity mainly in the direction of preferred activation (0° and -45° for SCM, -135° and 180° for 
others), excluding SCap. Large differences in spatial tuning were found for the STH. Recruiting muscles solely 
based on element length (MLF) resulted in similar spatial patterns as with KMLF (excluding SCap) but of lower 
amplitudes. Co-contraction, the muscle activity during head movement where the respective muscle acts as an 
antagonist, was generally lower with MLF because muscles did not lengthen when acting as antagonists.  

MLF resulted in substantially higher peak head rotations compared to KF and KMLF during induced flexion (20° 
vs. 8° and 11°, respectively) and right oblique flexion (14° vs. 6° and 9° Y-rotation, respectively, see Table 3). 
However, MLF generally resulted in less rotation of the C7, C4, and C2 vertebra in all loading directions. KMLF 
therefore had a combined effect with smaller vertebral rotations than KF (up to 12° less C4 Y-rotation) and smaller 
head rotation than MLF (up to 9° less Y-rotation) in all directions. KMLF, KF, and MLF had similar axial rotations 
for the head and vertebrae in all loading directions. Fig. 6 shows a visual comparison of the model response at 
200 ms for two load cases, 0° and 90°, illustrating the effect of MLF and KF on spinal curvature and head rotation. 

 

 
Fig. 4. Head CG displacement in a local coordinate system with the x'-axis along the direction of loading, for the 
passive model (grey dashed line) and with neural feedback: KMLF (black solid line), KF (black dashed line) and 
MLF (grey solid line).  
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Fig. 5. Spatial tuning curves showing left muscle activation levels at 110 ms after loading onset generated by the 
neural control scheme (KMLF) and the separate KF and MLF loops. The ‘1’ on the perimeter represents 100% 
activity.  
 

TABLE III 
AMPLITUDE (°) AND TIMING (MS) OF PEAK HEAD ROTATIONS AND CORRESPONDING ROTATIONS OF C7, C4, 

AND C2 VERTEBRA FOR KMLF, KF, AND MLF DURING MULTIDIRECTIONAL LOADING (R. RIGHT). ALL ROTATIONS 
ARE REPORTED IN THE GLOBAL COORDINATE SYSTEM (FIG. 1A). 

Neural 
control 

Flexion (0°) R. oblique flex (45°)           
t (ms) C7 C4 C2 H t (ms) C7 C4 C2 H      

X-rot                     
KMLF  <±1 154 3 9 10 7      
KF  <±1 175 5 14 17 7      
MLF   <±1 176 3 9 9 8      
Y-rot                     
KMLF 154 7 13 15 11 173 6 10 10 9      
KF 155 9 20 23 8 179 8 21 24 6      
MLF 178 7 12 11 20 180 6 7 5 14      
Z-rot                     
KMLF  <±1 162 -3 -7 -8 -10      
KF  <±1 180 -2 -7 -7 -8      
MLF   <±1 155 -2 -6 -6 -9      
Neural 
control 

R. lateral bend (90°) R. oblique ext (135°) Extension (180°) 
t (ms) C7 C4 C2 H t (ms) C7 C4 C2 H t (ms) C7 C4 C2 H 

X-rot                
KMLF 196 5 15 18 18 187 3 10 11 13  <±1 
KF 214 8 25 29 20 202 5 15 18 16  <±1 
MLF 195 5 15 18 19 185 2 8 12 15   <±1 
Y-rot                
KMLF 93 2 2 0 -2 199 4 -11 -24 -13 244 5 -14 -35 -25 
KF 300 8 15 11 -4 216 5 -16 -33 -14 259 6 -22 -54 -30 
MLF 287 2 -2 -7 -8 226 -1 -12 -18 -13 230 -4 -21 -28 -22 
Z-rot                
KMLF 171 -4 -9 -11 -18 170 -3 -7 -9 -14  <±1 
KF 207 -2 -9 -12 -17 195 -1 -7 -11 -11  <±1 
MLF 157 -3 -9 -11 -17 167 -2 -8 -10 -15   <±1 
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Fig. 6. Spinal curvature at time zero (initial posture) and 200 ms in two of the simulated conditions, i) and iii), 
causing neck flexion (0°, top row) and lateral bending (90°, bottom row) for the model with KF, MLF, and KMLF 
(from left to right). 

IV. DISCUSSION 

In this study, we implemented a reflex recruitment model to simulate head-neck responses in HBMs intended 
for automotive safety applications. Simulation of multidirectional low-g loading indicated that a combination of 
kinematics and muscle length feedback resulted in the largest overall reduction of head and vertebral 
displacements and rotations. 

The current modelling approach included several assumptions in the implementation of two control paths 
based on inputs related to the vestibular system (KF) and muscle spindles (MLF).  The model assumed a linear 
combination of KF and MLF excitation signals, adopted from analytical models [37–39]. Although this 
simplification may be representative in many situations the interaction of vestibular and muscle spindle reflexes 
is highly complex, it is likely context dependent and the relative contribution of each reflex modulated by the CNS 
for a specific action [39]. On the basis of previous work [2,22–26] the model used the head-neck vector to estimate 
vestibular feedback signals of head angular velocity, but alternative formulations could be considered. Linear 
acceleration and angular velocity of the head could be used as separate model inputs, based on anatomical and 
physiological considerations of the vestibular organ [40].  In addition, detailed models of vestibular sensory 
dynamics could be included, similar to [28]. We chose to have low complexity and this study did not attempt to 
model the actual activity of the CNS. Rather, the goal was to develop a modelling approach that could incorporate 
both of these types of feedback to explore how the feedback loops, in particular MLF influenced model responses 
in order to guide future modelling efforts for advancing HBM intended for development and evaluation of safety 
restraint systems. Future studies may investigate the potential benefit of implementing more sophisticated 
models of the CNS in HBMs for traffic safety applications.  

MLF reduced vertebral rotations in all loading directions. MLF, similar to proprioceptive information, was the 
only direct source of information about internal neck kinematics, enabling adjustments by muscles inserting on 
the spine to maintain spinal curvature. Spinal alignment and intervertebral kinematics prior to and during impact 
have been suggested to play a role in neck injury mechanisms and outcome [31,41–44]. It is thus important that 
HBMs predict spinal kinematics during pre-crash to ensure the initial conditions before the crash are 
representative. Gathering detailed data on intervertebral kinematics from human subjects during dynamic events 
is difficult, which challenges thorough model validation. Although our study does not validate that MLF improves 
intervertebral kinematics prediction, it demonstrates the influence of including MLF in comparison to KF alone 
which is a common approach applied with current HBMs developed for pre-crash [2,22–26]. 

A load sharing definition was needed to transform a single control signal generated from kinematics feedback 
(KF) to a set of activation patterns determining the distribution of muscle activity in various loading directions 
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(Equation 1). Experimental neck muscle spatial tuning curves derived from multidirectional perturbations were 
used to define load sharing weight functions (𝑤𝑤𝑖𝑖(𝛼𝛼)). As experimental data was only available for eight neck 
muscles, remaining muscles were grouped to share the same weights (Table I). The groups were defined based 
on presumed muscle function as described by anatomical texts and further guided by simulations where single 
muscles were activated and the resulting head kinematics monitored. Despite this simplification KF resulted in 
reduced head displacements in all loading directions. However, additional studies are needed to assess the 
influence of this simplification on the kinematic and muscle responses or to provide the spatial tuning curves for 
the remaining muscles. Gathering EMG data from individual neck muscles in dynamic conditions is challenging. 
Using data collected from isometric neck exertions may present an alternative approach to generate spatial 
tuning curves for the muscles in our model for which no experimental data was available. An isometric analysis 
that defined load sharing during simulated maximum voluntary contractions was presented in [45] and used in 
simulations of anterior–posterior oscillations [28]. However, qualitative comparison of spatial tuning curves from 
isometric contractions [46] to dynamic spatial tuning curves [30] indicated that, for some neck muscles, isometric 
spatial tuning is less focused. Isometrically derived synergies would potentially therefore be less suitable for 
dynamic omnidirectional predictions as they might result in overestimation of the contribution of some muscles 
in some loading directions. Future simulation studies that compare the influence of using spatial tuning curves 
from dynamic vs. isometric conditions on head-neck kinematics may shed further light on the applicability of using 
isometric data in dynamic simulations to guide where to focus experimental efforts.  

The directional tuning of muscle activity, that is, the shape of the spatial tuning patterns, with KMLF was similar 
to KF for most muscles. Trap had more spread in activity, induced by MLF. This may be explained by the location 
of the points of insertion and origin of the muscle elements, ranging from the occipital bone to the lateral end of 
the clavicle, resulting in excessive lengthening in some loading directions. STH activity was high in six out of eight 
directions. The high activity during flexion and lateral bending does not match experimental data or what can be 
presumed from the anatomical location of this muscle given its anterior position to the spinal column and 
relatively small leverage to generate counteracting extension or lateral bending moments. The high activity was 
a result of the lengthening of the superior STH elements as the mandible moved relative to a rigid beam 
representing the hyoid bone and onto which the element was attached (see Appendix for a more detailed 
description). For instance, during flexion (0° loading direction in Figs. 4 and 5) an initial protraction of the head 
initiated lengthening of this superior element. It is unclear if the muscles above the hyoid bone would have a 
spatial tuning similar to that depicted in Fig. 5 but the high activation levels in multiple directions seem unlikely. 
Previous research has pointed out the importance of including the hyoid muscles in neck models. Their relatively 
large moment arm allow them to contribute largely to the total flexion moment of the neck and they activate 
during induced head extension [12,30,47,48]. In our model the hyoid muscles were needed to counteract 
excessive extension of the upper cervical spine. However, it is possible a more detailed model of the hyoid bone 
and suprahyoid muscles would provide a more representative response. 

The response of the HBM with the reflex recruitment model (KMLF) was evaluated for 1 g loading and 
compared to the passive model and implementation of each of the two reflex loops (KF and MLF). Other neck 
models with neural control, developed for automotive safety applications, have been applied in longitudinal 
loading [24,27] or as a part of whole body simulations [2,21,23,26], limiting meaningful comparisons to our model. 
A defined set of baseline simulation cases producing an isolated head-neck response would be beneficial to 
compare and validate head-neck models with neural control. Head falls, similar to the conditions simulated here, 
provide a simple setup that produces measureable head kinematics with accelerations level representative of 
pre-crash scenarios. A benefit of such a setup is the feasibility to perform an equivalent volunteer experiment (for 
multiple loading directions). This has been done for supine head falls producing neck extension in volunteers 
[27,49]. However, neither study included a sufficient description of the experimental setup, in particular regarding 
initial and boundary conditions, needed to perform a thorough comparison to model responses. We encourage 
further volunteer experiments with head falls in multiple directions, with well-defined inferior boundary 
conditions, that measure EMG and kinematics, to provide a set of omnidirectional data for segmental validation 
and model comparisons. 

The results clearly indicate the potential of the KMLF to reduce head displacement and maintain head angle 
while avoiding non‐physiological vertebral rotations, in multiple loading directions. The predictions from the 
model should be validated in future work. Applying the presented method for reflex recruitment the model was 
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capable of counteracting induced head motion in multiple directions, but should be evaluated using acceleration 
magnitudes and durations typical of real world pre-crash manoeuvers. The current model has the implicit 
objective of maintaining the head and neck in the original posture and was tested in unidirectional loading, but it 
is not yet clear whether the reflex recruitment model is capable of fully compensating for any particular time 
course of inertial loading. The model kinematic responses should be compared to experimental data from human 
subjects in replicated pre-crash vehicle manoeuvers such as emergency braking and steering. Further work to 
validate the muscle responses in realistic scenarios and asses the validity of using perturbation data for 
determining load sharing at other acceleration levels is also needed. Monitoring muscle activity in human subjects 
is methodologically challenging, but accurate muscle recruitment simulation is needed if the focus of the 
simulation is on forces, strains, and injury prediction in the neck. 

 

V. CONCLUSIONS  

This study implemented a neural control scheme for regulating neck muscle activity in a finite element 
occupant HBM. The results demonstrated that combining sensory information about head kinematics and 
individual muscle length to generate activation levels for each muscle resulted in the largest overall reduction of 
head and vertebral displacements and rotations in 1 g loading conditions. Including muscle length feedback 
enabled adjustments of spinal alignment which may improve the prediction of vertebral kinematics in some 
loading directions. Data on spinal kinematics of human subjects exposed to external loading are needed to verify 
these observations.    
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VIII. APPENDIX 

Modelled muscles 
The neck muscles were modelled with 188 one-dimensional Hill-type elements according to Table AI. The 

THUMS model does not include a hyoid bone. The hyoid muscles, which insert on the hyoid bone were therefore 
modelled with insertion on the mandible, albeit rerouted at a rigid beam at the approximate hyoid position 
relative to the spinal column and constrained to C4. Each hyoid muscle element (part) thus had two elements in 
series (using LS-DYNA card *PART_AVERAGED), both of which got the same activation level, where the superior 
element approximated a suprahyoid muscle. 

According to anatomical texts [1] the hyoid bone and the larynx (attached to the hyoid bone) can span the C3-
C6 level in males. Data from Valenzuela et al. [2] suggests that on average the most superior and anterior point 
of the body of the hyoid is lower than the most inferior and anterior point on the body of C3 (see measurement 
H to H’ for normal head posture in Table 1 in Valenzuela et al. [2]. Based on this information, the location of the 
“hyoid beam” was approximated to be at the C4 level.  
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TABLE AI 
PHYSIOLOGICAL CROSS-SECTIONAL AREA (PCSA), ORIGIN AND INSERTION POINT, AND NUMBER OF ELEMENTS 
OF THE MUSCLES INCLUDED IN THE MODEL (SINGLE SIDE). ADAPTED FROM ÖSTH ET AL. [3]. REFER TO TABLE II 

IN [3] FOR RESPECTIVE REFERENCE ON PCSA, ORIGIN AND INSERTION.  

Muscle name 
No. 
Elements 

PCSA 
[mm2]  Origin Insertion 

Erector spinae longissimus cervicis 5 149 T. proc. C2–C6 T. proc. T2–T6 
Erector spinae longissimus capitis 8 98 Mastoid process T. proc. C4–T4 
Erector spinae iliocostalis cervicis 3 99 P. tub. C4–C6 4th–6th rib 
Multifidus cervicis 12 450 S. proc. C2–C7 T. proc. C5–T4 
Semispinalis cervicis 4 310 S. proc. C2–C5 T. proc. T1–T4 
Semispinalis thoracis 2 140 S. proc. C6–C7 T. proc. T5–T6 

Semispinalis capitis 5 550 Occipital bone S.A. proc. C4–C7,         
T. proc. T3 

Splenius cervicis 3 144 T. proc. C1–C3 S. proc. T3–T5 
Splenius capitis 6 312 Mastoid process S. proc. C5–T3 
Trapezius 3 378 Skull Clavicula 
Levator scapulae 4 312 T. proc. C1–C4 Scapula 
Rectus capitis posterior minor 1 92 Occipital bone P. tub. C1 
Rectus capitis posterior major 1 168 Occipital bone Spine of C2 
Rectus capitis anterior 1 70 Skull C1 
Rectus capitis lateralis 1 70 Skull C1 
Obliqus capitis superior 1 88 Occipital bone T. proc. C1 
Obliqus capitis inferior 1 195 T. proc. C1 S. proc. C2 
Scalenus posterior 3 105 T. proc. C4–C6 1st rib 
Scalenus medius 6 138 C2–C7 1st rib 
Scalenus anterior 4 188 A. tub. C3–C6 1st rib 
Longus colli superior oblique 3 81 Anterior arch C1 T. proc. C3–C5 
Longus colli vertical 4 90 Vertebral body C2–C4 Vertebral body C7–T3 
Longus colli inferior oblique 2 40 T. proc. C5–C6 Vertebral body T1–T2 
Longus capitis 4 136 Occipital bone T. proc. C3–C6 
Omohyoid 3 (1) 44* Scapula Hyoid bone 
Sternohyoid 4 (2) 26* Sternum Hyoid bone 
Sternothyroid 4 (2) 32* Sternum Hyoid bone 
Sternocleidomastoid 2 492 Mastoid process Clavicula and sternum 

A. tub. = Anterior tubercle; P. tub. = Posterior tubercle; S. A. proc. = Superior articular process; T. proc. = Transverse process. 
Numbers within parenthesis represent the number of parts (*PART_AVERAGED). 
*Borst et al. [4]. 
 
Strength Verification 

The HBM’s maximum isometric neck strength was evaluated in three simulations for flexion, extension and 
right lateral bending. Muscle elements associated with each of the three motions were maximally activated (𝑢𝑢𝑗𝑗 =
1) while the head was constrained by a beam element attached to the head opposite to the respective motion. 
Antagonist muscles were not activated. The cervical vertebra and skull were merged into a single rigid body during 
these simulations to avoid non-physiological intervertebral motions. Moreover, to verify the strength balance of 
the defined muscle synergies in flexion-extension, this setup was simulated with 𝑢𝑢𝑗𝑗 = 𝑤𝑤𝑖𝑖(𝛼𝛼) and 𝛼𝛼 = 180° for 
flexion, 𝛼𝛼 = 0° for extension (antagonists not active). The exerted head forces were extracted and the resulting 
moments at the C7-T1 level (resolved to the midpoint between the C7 process and the sternal notch) were 
compared to C7-T1 moments of male subjects reported in [6–9]. 

The maximum isometric neck strength of the model was above average volunteer strength in all directions, 
except for extension in one study (Table AII). It was however, within the standard deviation of Jordan et al. [7] 
and Fice et al. [9] for flexion and Jordan et al. [7], Vasavada et al. [8], and Fice et al. [9] for extension. The resulting 
C7-T1 moments, when muscles were activated according to the synergies defined by 𝑤𝑤𝑖𝑖(𝛼𝛼), were 24.4 and 23.4 
Nm for flexion and extension, respectively.  
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TABLE AII 
COMPARISON OF MODEL ISOMETRIC NECK STRENGTH TO MALE VOLUNTEERS REPORTED IN MOMENTS ABOUT 

C7-T1. VALUES REPRESENT AVERAGE ± STANDARD DEVIATION IN NM. 

  
Nr. of 

subjects Flexion Extension Lateral bending 
Cagnie et al. [6] 48 24 ±  6 36 ± 8  
Jordan et al. [7] 50 30 ± 9 55 ± 14  
Vasavada et al. [8] 11 30 ± 5 52 ± 11 36 ±  8 
Fice et al. [9] 9 30 ± 6 51 ± 11 32 ± 9 
     
Model  35.7 54.8 44.9 

 
The model’s isometric neck strength in flexion and extension compared well to measures of a total of 70 

male volunteers reported in three studies [7–9], but was generally above the average reported strength. The 
model’s strength in lateral bending was above the reported standard deviation of 20 volunteers. The higher 
strength of the model was probably because the agonist muscles to each exertion were given an activation level 
of 100%. However, it is unlikely that the corresponding muscles were all recruited to their physiological 
maximum in the volunteers. For instance, trapezius and levator scapulae are mainly shoulder muscles and 
unlikely to exhibit a maximum contraction during voluntary neck extension [10]. EMG recordings during 
maximum voluntary contractions (MVCs) have shown that semispinalis capitis, semispinalis cervicis, trapezius, 
sternocleidomastoid, and sternohyoid muscles, generally do not contract maximally during lateral bending 
[11,12]. Applying maximum activation in the model might therefore explain the consistently higher moments 
than seen in the average male volunteer. 
 
Verification of spatial tuning of muscle recruitment 
 

 
Fig. A1. Spatial tuning patterns with kinematics feedback (KF, dotted curves) compared to the implemented 
experimental spatial tuning curves (red dots) from Ólafsdóttir et al. [5] that were used to define load sharing 
between various muscle groups (weighting functions, 𝑤𝑤𝑖𝑖(𝛼𝛼)). All tuning curves show left muscle activation levels 
at 110 ms after loading onset. The ‘1’ on the perimeter represents 100% activity.  
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