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Novel Fractional Viscoelastic Model of Ligaments for High Strain Rates

Joost Op ‘t Eynde, Maria Ortiz-Paparoni, Scott R. Lucas, Cameron R. Bass

Abstract Injuries to cervical spine ligaments are a common occurrence in high-rate events. To build an
accurate computational model that describes the mechanical behaviour of these ligaments at a fast strain rate,
their viscoelastic behaviour needs to be accounted for. [1] provided a linear viscoelastic model of the anterior
longitudinal ligament (ALL) in the cervical spine, describing the instantaneous elastic response and the relaxation
behaviour using exponential reduced relaxation functions. A novel fractional order viscoelastic model is proposed,
offering the potential to consistently describe viscoelastic behaviour over longer time scales while using fewer
parameters. Stress and strain measurements from high-rate uniaxial bone-ligament-bone segment tensile tests
were obtained from the original study, and integer and fractional order viscoelastic model results were compared
with each other and the experimental stress data. The linear instantaneous elastic properties of the ligaments
were confirmed, and a linear instantaneous elastic function was used in both the integer and fractional models.
The fractional order model proved competitive with the traditional integer order model at short time scales.
Further studies including stress relaxation at both very short and very long time scales are needed to distinguish
between models.
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I. INTRODUCTION

Cervical spinal ligaments play an important role in stabilising the cervical spine to prevent critical spinal injuries
[2]. Injuries to these ligaments can occur in high-rate events such as accidental falls, automotive crashes, and
military scenarios. A common example of ligament injury in the cervical spine is whiplash, caused by neck
hyperextension during a high speed event, often an automotive crash [3]. Anterior longitudinal ligament (ALL)
injuries in the cervical spine have been found after whiplash trauma [4]. Examples of spinal ligament injury
scenarios in a military setting are repeated loading in military vehicles [5] and aircraft crashes [6]. Because of the
high cost and disability associated with these injuries, there is both civilian and military interest in the
development of accurate computational models. These computational spine models support investigations
designed to prevent or reduce injuries, but need accurate material properties valid for the simulated scenario to
provide relevant predictions. Several studies have investigated the biomechanical properties of spinal ligaments
at high-rate deformation strains [7-9]. However, few have accounted for their viscoelastic nature; the accurate
characterisation of short- and long-term stress relaxation behaviour under loading.

Reference [1] provided a novel viscoelastic model of the anterior longitudinal ligament (ALL), posterior
longitudinal ligament (PLL), and ligamentum flavum (LF) using quasilinear viscoelasticity theory (QLV). A range of
material constants was found to describe the instantaneous elastic response and relaxation behaviour of the
ligaments, including relaxation during loading. This behaviour, however, is derived from the response of many
exponential elements spanning the time domain. The majority of relaxation from an exponential term occurs over
asingle decade on a logarithmic time scale. To capture the ligament response during a longer time frame, multiple
exponential terms with a variety of time constants can be summed to form a single relaxation function, often
called a Prony Series.

A relaxation function for a material can be derived from the constitutive equation describing its stress-strain
behaviour. When the constitutive equation contains integer order differentials (e.g. first derivative, second
derivative, etc.), this relaxation function will consist of exponential functions. Principles of fractional calculus
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have been proposed [10] to describe material behaviour, a theoretical basis for their use has been established
[11], and fractional derivatives have been shown to naturally appear in the behaviour of real materials [12].
Introducing fractional derivatives in the constitutive equation provides a direct description of materials exhibiting
power law relaxation behaviour, spanning multiple decades on a logarithmic time scale using only a few
parameters [13,14]. Instead of describing material behaviour at each time scale separately, a general description
valid over extended time scales may be possible. Materials exhibiting power law relaxation behaviour are
relatively easy to identify, as their pure relaxation behaviour appears as a straight line on a log-log stress
relaxation time graph. An illustration of the difference between exponential and power law relaxation behaviour
can be seen in Fig. 1. Fractional order viscoelastic models have been used in biological tissues to model stress
relaxation of arteries [15], and a fractional viscoelastic analytical model of the periodontal ligament has been
proposed [16], but to the knowledge of the authors, no fractional order viscoelastic models based on
experimental data of stress relaxation in any human ligaments exist in the scientific literature.

The aim of the current study is to characterise the stress relaxation of ALL cervical spinal ligaments under fast
strain rates (up to 80 s™1) using a novel fractional order linear viscoelastic model, with relaxation data obtained
from [1]. A comparison is made with an integer order linear viscoelastic model, as used in the original study.
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Fig. 1. Relaxation behaviour over extended timescales for an exponential element (dashed line) as used in the
integer model, and power law element (solid line) as used in the fractional model in this study. The power law
element from the fractional model shows decay in a straight line on the log-log plot, spanning multiple decades.

Il. METHODS

All experimental data was obtained from [1]. For an in depth description of materials and methods, one can
refer to the original publication. An overview of essential methods is described here.

Cervical Spine Specimens

The cervical spinal ligaments of three male and two female post-mortem human subjects were used in this
study, more information on the subjects can be found in Table I. Cervical spines were separated into C3-C4, C5-
C6, and C7-T1 functional spinal units (FSUs). Each FSU was further segmented into bone-ligament-bone sections
for the anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL) and ligamentum flavum (LF). In
the present manuscript, only the modelling of the ALL is discussed. Soft tissue surrounding the ligaments was
maintained for hydration purposes. The bone on both sides of the ligament was potted in aluminium cups using
urethane casting resin (Fast Cast, Goldenwest, Cedar Ridge, CA, USA). Specimens were bagged and placed in a
water bath [7] to approximate physiological temperature and hydration conditions. After excluding damaged
specimens and especially noisy test data, 13 ALL tests were used for modelling.

- 674 -



IRC-18-95 IRCOBI conference 2018

TABLE |
POST-MORTEM HUMAN SUBJECTS
Specimen ID  Gender  Age(y) Stature (mm) Mass (kg) Spinal level
1 M 60 1780 84 C3-Cc4
C5-C6
C7-T1
2 M 43 1745 107 C3-C4
C5-C6
C7-T1
3 F 57 1685 50 C3-Cc4
C5-C6
C7-T1
4 M 66 1680 66 C3-Cc4
C5-C6
5 F 61 1600 50 C3-Cc4
C5-C6

Mechanical Testing

After mounting the specimens in a universal test machine (Instron, Inc. #8874, Canton, MA, USA), the soft tissue
surrounding the ligaments was removed. The mechanical testing was conducted inside an environmental
chamber to approximate physiological temperature (37.2 £ 0.6 °C) and humidity (>90%). A detailed schematic of
the testing conditions can be found in found in [7], companion paper to [1]. Engineering strain (¢z) was defined
as the ratio of displacement (Al), to initial length (l,). Initial length was measured by digital calipers as the distance
between the cranial endplate of the superior vertebral body and the caudal endplate of the inferior vertebral
body after applying a 4 N tension preload to the specimen. The average + standard deviation of [, for the used
specimens was 3.67 £ 0.75 mm. Preconditioning for each ligament was done using a 10% &g sinusoidal input at
2 Hz for 120 cycles. Following preconditioning, tensile ramp holds at 25% &r (R,5) and 50% g (Rs5q) tests were
performed with a 10 minute recovery time between each test. The duration of each ramp was approximately 10
ms, limited by the displacement rate of the universal test machine, and the tension strain was held for 1 min
before returning the specimen to the neutral position. Strain rates reached up to 50 s™! in the R, tests and up
to 80 s in the Rs, tests. Axial force (F) and displacement (Al) were sampled with a rate of 10,000 Hz. The
analysis in the current manuscript uses only the first 1,100 ms of this recording.

Stress and Strain Conversion

Measured force and displacement were converted to true stress (or) and true strain (e7) as described in [7].
Original ligament cross-sectional area (4,) was assumed proportional to the width of the cranial endplate of the
superior vertebral body (VBW) and A, was determined by scaling as

VBW

Ay = Asp VBWey (1)

where Az, and VBWs, are ligament cross-sectional areas and vertebral body widths respectively for the 50™
percentile male specimens from stud. The ligaments were assumed incompressible during testing, so

Al =Aolo (2)

can be used to relate instantaneous cross-sectional area and length A and [ to original cross-sectional area and
length Ag and L. True stress was calculated as

F 1
or A", T op(1+¢g) (3)
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where oy, is the engineering stress, defined as the ratio of force F to original cross-sectional area A,. True strain
then was defined as

Ldl l Iy + Al
er=fde=| —=In—=1In
o L Lo lo

=1In(1+ &) (4)

where g5 is the engineering strain as mentioned earlier.

Viscoelastic Models

Reference [1] found that the instantaneous elastic behaviour of the ligaments can be very closely approximated
by a linear model. Models analysed in this study assume a linear relationship between the instantaneous elastic
stress and engineering strain. True ligament tensile stress o was modelled using a hereditary integral [17]:

t

de
or(t) = f Grea(t —t") Kd_;dt, (5)
0

where G, is the reduced relaxation function, K is the instantaneous elastic parameter, t is time and t' is a
dummy variable used for integration. A linear instantaneous elastic relationship is used here: g,; = Keg. As in
the original paper [1], an exponential formulation for the instantaneous elastic relationship was investigated and
found not to improve overall fit results, for all models used.

Two different forms of G,.4 are compared, an integer order model and a fractional order model. The integer
order reduced relaxation function is expressed as a sum of exponential terms [1]:

n t n
Grog(t) = G +Z Gie T with G + ZGi -1 (6)
i=1 i=1

with G, the steady-state relaxation coefficient, and n the number of G; relaxation coefficients with time

constants ;. The values of the 7; were set to decade values, i.e., 1 s, 100 ms, 10 ms, 1 ms. An example of the

relaxation behaviour of one of these exponential terms can be seen in Fig. 1 (dashed line).Models containing up

to five relaxation coefficients (n = 4) were evaluated and compared to results from the fractional order model.
The reduced relaxation function for the fractional order model was expressed as:

m

Grea(® = ) (B + E((Bip)™ = 1) B (~(B)°)) o)
i=1

where m is the number of fractional elements in parallel, with each element described by «;, the fractional order

exponent, B; the relaxation constant, p; the retardation constant and E;, the elastic modulus. E,(z) is the Mittag-

Leffler function, defined by the infinite series [18]:

Eq(2) = ;m (8)

For a = 1, the Mittag-Leffler function becomes an exponential function and the fractional model is equivalent to
the integer model. Models containing up to two fractional order elements (m = 2) were evaluated. An example
of the relaxation behaviour a fractional order element can be seen in Fig. 1 (solid line).

The hereditary integral in Equation (5) was numerically integrated. Optimisation of instantaneous elastic
parameter K, integer model parameters G, G;, T;, and fractional model parameters E;, a;, f;, p;, to fit model
stress to measured stress was done with least squares fitting and a trust region optimisation algorithm in
MATLAB® (MathWorks, Inc., Natick, MA, USA). Parameters were restricted to strictly positive values. After

- 676 -



IRC-18-95 IRCOBI conference 2018

comparing parameter values for the different ligaments, fixed values of fractional exponents a; were chosen.
Parameters were optimised for Rz, tests and then used to generate a prediction fit for the R, tests to validate
the model.

Models were compared by visual inspection, the R? value, and sum of squared error (SSE) ratios. The reason
the ratio of SSE is used rather than an absolute value is that size differences and oscillations in the stress data
produce model fits with SSE values spanning multiple orders of magnitude. A comparison between models for
one ligament is possible, but SSE is not the right metric for a comparison between different ligaments.

lll. RESULTS

Results were obtained for a nine-parameter integer order model (n = 4), and an eight-parameter fractional
order model (m = 2) for the R, tests and compared to each other. After observing initial optimisation results, a;
and a, values were set fixed to 0.1 and 0.8 in the fractional order model. Both models provided excellent results
for modelling ligament behaviour in Rs, tests with R? values average + SD being 0.989 + 0.010 for the integer
order model and 0.989 + 0.009 for the fractional order model. The median ratio of integer model SSE to fractional
model SSE was 1.006, with the fractional model providing a slightly better result. The average SSE ratio however
was 0.965, showing a better average fit for the integer order model. The optimisation results can be found in
Table Il and Table Il1.

A seven-parameter integer order model (n = 3) was constructed by eliminating from the nine-parameter model
the relaxation coefficient and time constant with the smallest contribution. Contrary to the findings in [1], the G,,
7,= 1 ms term was found to have the smallest contribution to the model fit, with its contribution becoming
negligibly small (< 10~7) in 8 of the 13 cases. All four possible seven-parameter models were analysed, and it was
confirmed that the G4, G5, G3 model provided the best results.

With an R? value of 0.988 + 0.009, the seven-parameter model performed almost as well as the nine-
parameter model and the eight-parameter fractional model. The ratio of seven-parameter integer SSE to eight-
parameter fractional SSE had a median of 1.010 and an average of 1.17. The results are represented in Table IV.
A representative stress-time history with model fits for the three described models can be found in Fig. 2.

TABLE Il
8 PARAMETER
FRACTIONAL ORDER MODEL

TABLE Il
9 PARAMETER
INTEGER ORDER MODEL

TABLE IV
7 PARAMETER
INTEGER ORDER MODEL

Parameter Mean + SD Parameter Mean £+ SD Parameter Mean £+ SD
aq 0.1 Tq 1 Ty 1
a; 0.8 Ty 0.1 Ty 0.1
B 7.54 + 16.96 T3 0.01 T3 0.01
B 71.65 + 43.63 Ty 0.001
D1 421 +4.18 G 0.113 + 0.026 Gy 0.128 + 0.031
o 1.77 £ 3.00 G, 0.082 + 0.030 G, 0.083 + 0.034
E; 0.98 + 0.01 G3 0.213 + 0.081 G 0.253 £ 0.092
E, 0.02 £ 0.01 Gy 0.088 + 0.157
G 0.503 £ 0.141 Gy 0.536 £ 0.116
K 336.1 £934.0 K 863 + 2502 K 836 + 2506
R? 0.989 + 0.009 R? 0.989 + 0.010 R? 0.988 £+ 0.009
SSE 1 (reference) SSE 0.965 + 0.112 SSE 1.169 + 0.569

The optimised parameter results of the R tests for all three models were used to predict the stress in the
R,s tests as a validation of the models. The average + SD R? values found were 0.953 + 0.035 for the fractional
order model, 0.953 + 0.035 for the nine-parameter integer order model, and 0.954 + 0.032 of the seven-
parameter integer order model. The ratios of SSE between the integer order models and the fractional order
model had an average of 1.001 for both the nine-parameter and the seven-parameter integer order model.
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Fig. 2. Representative model fit to experimental stress-time response (grey circles) for an Ry, test (50%
engineering strain). The solid line is the fractional eight-parameter model fit, the dotted line is the integer
seven-parameter model fit, and the dashed line is the integer nine-parameter model fit. Both time and stress
axis have a logarithmic scale. Straight line decay on this log-log plot suggest power law relaxation behaviour in
the ligament.

IV. DISCuUsSION

A fractional viscoelastic model was developed and applied to model stress relaxation of the anterior
longitudinal ligament (ALL) in the cervical spine under high-rate loading conditions. This fractional model is a new
approach for describing experimental stress relaxation behaviour in ligaments.

The results of the R5g model optimisation suggest that the fractional order model does not outperform the
traditional integer order models in this scenario, providing similar results for a similar number of parameters
used. Considering the added mathematical complexity and computations necessary to operate the fractional
model compared to the traditional model with exponential functions, the traditional integer model is the
preferred choice for modelling the ALL.

Upon close examination of the ligament relaxation behaviour, some of the ligaments deviated from a straight
line in a log-log plot, this is a possible reason why the fractional model provided better results for some ligaments
but not for others. The methodology used in this study can be applied to different materials, biological or
otherwise, when power law relaxation is suspected.

Contrary to integer order models, fractional models have the potential to be valid over extended time scales
because they are theoretically exact for power law relaxation behaviour, increasing the value for computational
problems with both short term acute and long term physiological response. Fractional models do not offer a one
size fits all solution, because they are computationally more expensive than traditional models, so the inherent
relaxation behaviour of a material should be evaluated before a computational model is chosen. Straight line
relaxation behaviour on a log-log plot suggests power law relaxation, which could be modelled using fractional
calculus.

For the prediction of the R, stresses based on the parameters optimised for behaviour of the ligaments in the
Rs test, all three models performed similarly. This is because the difference in ligament behaviour between the
R,5 test and the Ry test is larger than the difference between the model stresses and the Rg, stress. Any
distinction between the models is small in comparison. Surprisingly, the seven-parameter integer order model
had an R? value slightly higher than the other two models, but all three models provided a good fit.

The stress strain histories used in this analysis only contained relaxation data up to 1.1 s after the ramp tensile
load, while in the original study relaxation behaviour up to 1 minute after the ramp was recorded. Future studies
should include both short and long time scales to investigate where a fractional model might perform better.
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V. CONCLUSIONS

Fractional order viscoelastic models provide similar results to traditional integer order models for relaxation
behaviour in cervical spinal anterior longitudinal ligaments. Due to the added complexity of the fractional model,
the traditional model is preferred in this case. Fractional order models might be applicable for other materials or
loading scenarios, because they have the potential to be valid over extended time scales. Inherent power law
relaxation shows straight line decay on a log-log plot of stress over time. Fractional calculus is theoretically exact
for power law behaviour. Future studies containing both very short and long time scales are recommended to
distinguish between fractional and traditional models.
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