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A Method to Determine Cortical Bone Thickness of Human Femur and Tibia Using Clinical CT Scans

Wenjing Du, Jinhuan Zhang, Jingwen Hu

Abstract Femur and tibia fractures, are commonly seen in motor vehicle crashes. Cortical bone thickness is an
important contributor to bone strength and stress-strain distribution in impacts. Current finite-element lower
extremity models typically focus on three human sizes (i.e. small female, midsize male, and large male), and do
not consider the variation in cortical bone thickness among the whole population. Clinical computed
tomography (CT) has been used to determine the cortical bone thickness distribution, but the conventional
global thresholding method often fails to offer accurate thickness estimation in thin-cortex areas. In this study, a
new local thresholding method was developed to determine cortical bone thickness using clinical CT scans and
statistical models of cortical bone thickness for human femur and tibia were also established with respect to
sex, age, stature and body mass index (BMI). It was found that the average thickness error of the
newly-proposed local thresholding method was less than 0.1 mm. In thin-cortex areas, the proposed method
provided more accurate results than the global thresholding method. Statistical analysis suggested that age and
BMI significantly affect the cortical bone thickness for both femur and tibia.
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I. INTRODUCTION

The increasing use and improvement of occupant restraint systems have reduced fatality and severe injury
rates in motor vehicle crashes (MVCs), but the protection of the lower extremity (LE) was not improved as much
as that of the head and chest [1]. LE injuries still account for 36% of all AlS2+ injuries sustained by front seat
occupants in all frontal crashes [2]. Even though LE injuries are usually not fatal, they can lead to costly
rehabilitation and disability, which is a heavy burden for the family and community. Femur and tibia fractures
are commonly seen in MVCs and cortical bones are believed to have a dominant effect on bone strength, as
they serve as a damage-tolerant structural framework [3]. Aging can cause changes in the shape, size, and
cortical thickness of bones and thus lead to increased incidence of bone fractures [4]. Other factors such as
stature and body mass index (BMl), can also affect bone morphology [5-9].

Finite element (FE) models are powerful and effective tools to assess human impact responses in MVCs and
reproduce bone fractures. Multiple FE femur and tibia models have been developed previously. References
[10-12] reported detailed LE models using the geometry extracted from CT and/or magnetic resonance imaging
(MRI) data. However, their models could not reflect the variation in cortical bone thickness among the
population, and a method to estimate the cortical bone thickness from CT scans was not reported. Reference [8]
did a comprehensive job on the development of parametric femur FE models, and the population variation in
cortical bone thickness was considered. They used a fixed global thresholding method similar to [13] to segment
the cortical bone from clinical CT scans, and the thickness was determined based on the distance between the
outer and inner cortical surfaces along the normal direction. However, the estimated cortical thickness values
were sensitive to the specified threshold, and may introduce significant errors in thin-cortex areas.

In the field of medical image process, several cortex thickness estimation techniques based on clinical CT
scans have been proposed, such as the 50% relative threshold method [14-15]. This method considered bone
density, which was usually denoted by HU values in CT images. The threshold was set halfway from the soft
tissue HU values to the cortex HU values and from the cortex HU values to the trabecular HU values. It was
effective if cortex was thick enough in which case the true cortical bone density equaled to the maximum value
of the density profile (expressed in HU values) along a line, but it became unreliable in thin-cortex areas and
tended to overestimate cortex thickness. References [16-17] did an extensive research on femoral cortical bone
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thickness measurement from clinical CT data based on the model derived from [14] using a model-fitting
method. This technique considered the imaging system’s point spread function (PSF) and required knowledge of
the density (expressed in HU values) of the true cortical bone, which was assumed to be a constant value for a
given subject. The bone density may vary from location to location, thus assuming the cortical bone density as
constant at all measuring vertices/points seemed problematic, and the model-fitting process might not
converge. Nevertheless, this was a decent technique of great accuracy. Reference [18-19] then proposed a
model-based approach without profile fitting but still shared the assumption of a constant cortex density in
[16-17]. Bone material content (BMC, i.e. bone mass) was calculated with three parameters measured in the
profile with the help of the 50% relative threshold method. Since there were no model-fitting iterations,
computation efficiency was considerably improved.

In this study, a local thresholding method was developed to quantify the thickness in cortex areas of the
femur and tibia without model-fitting process or assumption of constant cortex density. Inspired by the 50%
relative threshold method, on each local HU value profile, a ratio (not 50%) was employed to define a local
threshold that distinguished cortex from soft tissue and trabecular bones. This ratio indicated a relative cortex
density compared to the most dense part (where CT value was the highest) without the need to assume a
specific cortex density value. Unlike the ‘ground truth’ obtained from high-resolution micro-CT scans in studies
[16-17], the proposed method was validated against measurements from a post human mortem human subject
(PMHS). Results were compared with the conventional global thresholding method to show validity of this
method. FE meshes of a baseline model were morphed and fitted to the geometry surfaces reconstructed from
95 clinical CT scans and the cortical bone thickness at each node was computed using the proposed method.
Parametric femur and tibia thickness models were developed to address the effect of sex, age, stature and BMI
on cortical bone thickness distribution.

Il. METHODS

Several parametric FE models [5-9,20] of different human body parts have been developed using a Radial
Basis Function (RBF) based method and the whole process is summarised and illustrated in Fig. 1. These models
should include geometry shape and size models and thickness models. However, previous thickness models [8]
did not address the cortical bone thickness well. As a key step of the process, the cortical bone thickness can be
estimated using the proposed local thresholding method in this study.
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Fig. 1. Whole process of developing parametric models, taking femur as an example.

Bone Geometry Extraction, Morphing and Fitting Techniques

Clinical computed tomography (CT) scans were obtained from multiple hospitals in China through a protocol
approved by an institutional review board at Tsinghua University (Beijing, China). All scans in this study were CT
angiography scans which covered an entire lower extremity (LE) from pelvis to foot. The CT scans had slice
thickness ranging from 0.625 to 1.25 mm with 512 x512 pixels on every slice of image. Pixel size varied from
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0.623 mm to 1.079 mm. In total, 95 CT scans from 59 male and 36 female patients were collected. Fig. 2 shows
that the age range was 16-83 years, and BMI 17.31-32.05 kg/m?. No significant correlation between age and
BMI was found.
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Fig. 2. Subject characteristics distribution.

All CT scans were processed in Mimics (version 19.0, Materialise NV, Belgium). First, a global Hounsfield Unit
(HU) threshold value was set to be 210 to segment and reconstruct femurs and tibias in three dimensions, and a
series of editing procedures were applied to ensure the bone external surfaces were smooth and water-tight.
The bone external surfaces were then exported to Rhinoceros 3D (version 5.0, Robert McNeel & Associates,
Seattle, WA) to identify homogenous landmarks on the bone external surfaces of all patients. A total of 23
landmarks at the distal and proximal ends for femur and 16 for tibia were identified. These landmarks were
either anatomic landmarks or can be easily distinguished. In the diaphysis region, centroid points of each slice
were calculated, which formed the anatomic axes for femur and tibia. This was done by averaging the
coordinates of all pixels on each slice whose HU values were above the threshold in Mimics. Eleven points were
evenly distributed on the axes and treated as additional landmarks. Instead of putting landmarks on the
diaphysis surface, using centroid points can effectively help avoid poor mesh quality in the next few steps.

Femur and tibia meshes from a mid-size male human FE model were used as the template meshes. Following
the same protocol mentioned above, homogenous landmarks were also identified on the template mesh. In this
study, a landmark-based mesh morphing technique based on a RBF was implemented to morph the template
meshes to the bone geometry for each subject. The morphed meshes were then projected to subject geometry
surfaces using a customized MATLAB function. It should be noted that the subject geometry surfaces were not
necessarily the exterior edge of bone cortex. Nodes on these surfaces offered thickness measuring positions and
helped orient the normal direction along which thickness was estimated.

Cortical Bone Thickness Estimation

When the template meshes were morphed and fitted to the geometry of each subject, cortical bone
thickness at all the template nodes were calculated. Two methods, global thresholding and local thresholding,
were used to estimate the cortical bone thickness as shown in Fig. 3 and Fig. 4. Take femur as an example, a HU
value versus point location profile was obtained first for each designated node O’ on the subject geometry
surface. A 16-millimetre line MN that went through node O’ was drawn along the surface normal direction,
which was long enough to cover the possible thickest cortex. The start point M of the line was 3 millimetres
away outside the template surface. Along the line, 161 evenly-distributed points were sampled with
0.1-millimetre interval. For each sampled point, its HU value was interpolated using a distance-weighted
average value of its eight closest voxels with non-zero HU values from CT images according to Equation (1).

8
D> HU,; xd,;
HU . = i=1 ' (1)

est 8
dv,i
i=l

where HU,, is the HU value estimated for a given point on MN, HU , is the HU value of the i closest voxel
and d; is the Euclidean distance from the i** closest voxel to the given point.

The HU value versus point location profile was then smoothed using a thin-plate spline interpolation. Point
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location was defined as the Euclidean distance from each sampled point to point M. Without loss of generality,
all the profiles were from the bone exterior to the interior.

The global thresholding method used in this study was similar to [8,13]. A fixed HU threshold value, HU ,,
was applied to all HU value-location profiles. Values above the threshold were considered cortical bone; while

values below the threshold were considered non-cortical bone. The distance between the two points (D and E in
Fig. 3) where the HU values were equal or above the threshold was defined as cortical bone thickness.

Hounsfield Unit

1600 |
1400 -]
1200

1000

Hounsfield Unit

i P

D, iD, En E

-200 L e e L SR IR N N B e e e e |
001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Location (mm)

Fig. 3. Cortical bone thickness estimation based on the global thresholding method.
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Fig. 4. Cortical bone thickness estimation based on the local thresholding method.

This study proposed a new local thresholding method as illustrated in Fig. 4, in which the HU value threshold
for each point was dynamically determined. On the profile, point A was defined as the first maxima point while
HU , was its corresponding HU value. A two-millimetre line MX was defined in the soft tissue area outside the

bone structure with relatively low HU values. In the bone area, HU values typically ranged from 200 to 3,000
[21]. The derivative of the HU value-location curve (DHU curve) was calculated, and the DHU from M to X (soft
tissue background) should have an average close to zero with a small deviation. To locate a point on DHU whose
value was significantly larger than the soft tissue background, a threshold of DHU was defined in Equation (2).

DHUthreshoId = /uDHU +4‘27GDHU (2)

where 1, s the mean value of DHU,, , and oy, =~ is the corresponding standard deviation. Point B is the
first point to reach the threshold DHU,,.,,, ©" the DHU curve and point Cis the corresponding point on the HU

curve as point B on the DHU curve. Finally, the cortical bone threshold, HU,, ... » for this specific HU profile
was defined in Equation (3),

HUthreshoId Z(HUA_HUC)XKcor_'-HUC (3)

where HU, and HU_ are the HU values at points A and C, respectively. K is a key coefficient named cortex
coefficient that required calibration through experiment.
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In this study, cortical bone was identified solely based on HU profiles without any information of cortex bone
mineral density (BMD). K, and the local HU threshold defined a relative density relationship between the

cortical bone and the surrounding soft tissue background. We assumed that K was a constant in Equation

r

(3), and its value was determined by correlating the estimation to cortical thickness measurements in PMHS,
described in the next section.

Cortical Bone Thickness Measurement

The left femur of a PMHS was used to measure cortical bone thickness. The unembalmed PMHS was CT
scanned and kept frozen. The femur was put in room temperature to thaw 12 hours prior to the experiment.
Five cutting planes were defined in the femur shaft and three more in the femur head, neck and epicondyle,
respectively, as shown in Fig. 5a. The cutting was completed following the order from A to H using an electric
saw. After each cut, the femur samples were fixed to a clamp on the table and the cross-section was leveled
before two photos were taken from the distal and proximal sides with an angle ruler (Fig. 5b and Fig. 6). In
addition, a 3D laser scanner was used to obtain the external surface of each cut femur sample. The scanned
external surface was translated and rotated to match the CT image based on anatomic landmarks (red round
solid dots) as shown in Fig. 5a. At least three non-collinear points on each cutting plane from the external
surface were required to define a plane for re-orienting the cross-section from the CT scan. In this way, the
cutting planes in the real femur can match the CT images.

Points where cortical bone thickness was measured were marked in the photos and CT images. Vertex
normal vectors at all measured points were estimated using a method described in [22]. In the photos, a caliper
was used to measure the distance between the measuring point and the boundary where cortical bone and
trabecular bone separated. In the femoral head and neck regions, most of the boundaries were distinguishable
on the cross section. In the femoral condyle, clear boundaries were not always available and therefore we only
recorded the cortical thickness at points where a clear boundary was visible. The distance was then converted
to cortical bone thickness in reference to the angle ruler. The cortical bone thickness values at the
corresponding points were also calculated using a customised MATLAB code based on the CT images. In this
study, 44 points were selected in the photos and CT images. The cortex coefficient K, was determined

through optimisation to minimise the mean squared errors between the calculated thickness values and
measured ones. Additionally, 19 more measuring points were selected to cross-validate the coefficient K, .
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Fig. 5a. Cutting planes in the experiment. Fig. 5b. Cortical bone thickness measurement.

For a given point P, the local threshold corresponding to its HU profile was determined by Equation (3).

Assume K_ =K =0.001xn, where n was an integer and ne(0,1000]. Let T and T,

exp,m,n cal,m,n

represent
thickness measured at the point P, in the experiment and from the CT scan, respectively. The calculation error

at point P with K =0.001xn could be denoted as,

E,.=T T (4)

m,n cal,mn ~ 'expm,n

For all possible cortex coefficients K, the mean squared errors between the measured and calculated
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thickness values were computed by Equation (5),
SSn = _Z Em,n :_Z(Tcal,m,n _Texp,m,n) (5)
M = M =

where SS is the mean squared error and M =44, representing the total number of measured points in this

study. The K that minimised SS, would be the cortical coefficient K, .

Parametric Femur and Tibia Thickness Models

Principal Component Analysis was performed to find out fewer, but sufficient variables called principal
components (PCs) that best explained the variance in the original thickness data set using a built-in MATLAB
function. All the principal components were orthogonal to each other and formed a new basis to describe the
original data in reduced dimensions. A regression analysis was then performed on the PCs with respect to age,
BMI and stature and thus parametric femur and tibia thickness models could be developed.

lll. RESULTS

Cortical Bone Thickness Measurement

Fig. 6 shows that the corresponding cutting cross-sections in the experiment and the CT image matched well.
For each cross section, a point was marked and measured on the most anterior, posterior, medial and lateral
edge. Twelve more points and 19 additional validation points were put where necessary and easily
distinguishable. All measuring points and validation points were carefully checked to make sure that they were
at the same location in the photos as in the CT slices. Three repeated measurements were performed at each
measuring point using a caliper. Table | lists some of the thickness results in different femur regions. The
percentage errors are shown in the parentheses.

Fig. 6. Femur cutting cross section in the experiment and the CT image. Left: cross section C; Right: cross section
D. Blue dots: from the experiment; Red dots: from the CT image.
Cortical Bone Thickness Calculation

For the global thresholding method, the HU threshold was set from 300 to 1,000 with an interval of 100. The
mean squared errors between the calculated thickness values and measured ones were also calculated for each
HU threshold value.

For the local thresholding method, the cortex coefficient K, was 0.605 if all 44 measuring points were

r

included and the minimised mean squared error was 0.615 mm?. The average estimated thickness based on CT
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was 4.26 mm, while the average measured thickness was 4.231 mm. The average thickness error was 0.029 mm
(0.685%) and the mean squared error in the validation was 0.626 mm?. However, the calculation results showed
an underestimation in the femur diaphysis where cortex was thick and an overestimation in the femur epiphysis

where cortex was thin. It could also be derived from Equation (3) that a larger K, would lead to a larger

HU o » Which could contribute to the underestimation of thickness in the femur diaphysis. We then

proposed to specify two cortex coefficients, 0.860 and 0.522, for thin-cortex and thick-cortex areas,
respectively. These cortex coefficients were optimised separately. At this time, the mean squared error reduced
to 0.114 mm?. The average thickness was 4.214 mm from calculation against 4.231 mm from experiment. The
average thickness error dropped to 0.017 mm (0.4%) and the mean squared error in the validation was reduced
to 0.044 mm?. These results suggested that K . for femur and tibia shafts was 0.522 and 0.860 for femur and

tibia ends. Partial results of both calculation methods are listed in Table I.

TABLE |
CORTICAL BONE THICKNESS (IN MILLIMETERS)
Local Thresholding Method,

K Global Thresholding Method
Femur Region Measured Value il 0.860
0.605 0522 400 600 700 800 1000
0976:0017  2.1(1152%) 08(-180%) 29 06 0 0 0
epiphysis 0.960£0.025 12(25.0%)  09(-625%) 0 0 0 0 0
(head) 1.516+0.025 27(781%)  11(-27.4%) 21 0 0 0 0
1063+0.028  36(2387%)  16(505%) 24 0 0 0 0
2.196+0.024 23(47%)  27(229%) 43 26 21 18 0.7
epiphysis 136240035 21(542%)  14(28%) 25 19 15 04 0
(neck) 1.12140.006 18(60.6%)  11(1.9%) 28 2 16 13 0
2.87740.007 28(-27%)  31(7.8%) 45 35 32 29 24
3.678+0.021 3.6(-21%)  39(60%) 63 51 47 42 3.5
6.749+0.006 6.3(-67%)  65(-37%) 77 69 67 65 6.1
d?‘;;’g}’;is 8.700+0.015 84(-3.4%)  92(57%) 130 103 97 91 7.4
6.655+0.034 5.7(-144%)  64(-38%) 85 70 64 58 25
4.103+0.021 3.5(-147%)  3.9(-49%) 52 46 43 39 3.4
7 946+0.026 7.4(-69%)  78(-1.8%) 89 85 81 7.8 7.1
1.178£0.023 20(69.8%)  1.0(-151%) 25 13 08 0 0
;’g)’igﬁ; 13230018 14(5.8%)  07(-47.1%) 12 0 0 0 0
1.41240.010 2.1(48.7%)  13(-7.9%) 28 21 16 13 0

Parametric Femur and Tibia Thickness Models
In this study, parametric thickness models were established for femur and tibia, respectively. Fifty-six PCs
were selected for the male femur model and 34 for the female model. The selected PCs were able to account for
99% of all the variance in each model. The coefficient of determination R-squared values were computed for each
parametric model using Equation (6),
R* = I—E (6)
TSS
where RSS is the sum of squared errors between the observed and predicted thickness values, and TSS is the
sum of squared differences between the average and observed thickness values. The R-squared values were
0.241 and 0.317 for the male and female femur thickness models, respectively. The R-squared values were
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0.186 and 0.301 for the male and female tibia thickness models, respectively. The p-values of the predictors on
the first five PCs for each regression model were summarised in Table Il. The regression results showed that age
and BMI were significant predictors for the femur thickness models while age was the only significant
characteristic for the tibia thickness models. Stature was excluded in the predictors because it did not show
significant effect on cortical bone thickness distribution.

TABLE Il
P-VALUES OF PREDICTORS IN THE THICKNESS MODELS (* P<0.05)
. p-value

Model Predictor 1st PC 2nd PC 3rd PC 4th PC 5th PC
Male femur Age 0.048* 0.000* 0.497 0.430 0.534
BMI 0.009* 0.916 0.070 0.105 0.089
Female femur Age 0.203 0.008* 0.006* 0.710 0.555
BMI 0.291 0.021* 0.878 0.152 0.235
Male tibia Age 0.035* 0.657 0.002* 0.003* 0.614
BMI 0.292 0.296 0.287 0.357 0.519
Female tibia Age 0.001* 0.444 0.048* 0.293 0311
BMI 0.130 0.719 0.149 0.820 0.515

IV. DiIscussION

BMD is the determining factor that distinguishes cortical bone and trabecular bone, and the HU value in CT
scans is positively correlated to BMD. Since bones are not made of homogeneous materials, cortical bones in
different body areas may sustain different BMDs and thus HUs. Studies [13,14,16] indicate that HU , (maximum

value of the HU profile) may drop considerably in thin-cortex areas because of the resolution limits and blurring
effect. Therefore, thresholds that separate cortical and trabecular bone are supposed to vary with local
BMDs/HUs in different areas. Conventional global thresholding method fails to consider such local effects. The
50% relative threshold method is robust and effective when cortex is thick enough. However, if the cortex is thin,
a fixed ratio of 0.5 may overestimate the cortical thickness. The newly-proposed local thresholding method
determines the thresholds based on the local background and maximum HUs, in which case the density
variances are considered. The ratio is derived based on a PMHS experiment independent of model assumption.
In this study, two different ratios were determined for thin and thick cortex regions, respectively. which can
overcome the limitations of the 50% relative threshold method. Since the profile of HU values distribution is
obtained in this method independent of pixel sizes, a cortex thickness value can be estimated even if it is thinner
than or close to the size of one pixel as shown in Fig. 7.
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Figure. 7 The local thresholding method in thin-cortex area (femoral neck, pixel size = 0.9766 mm).

In [18], accuracy levels of the 50% relative threshold method, the model-fitting deconvolution method [16-17]
and the model-based profile analysis method [18-19] were reported and compared using the standard European
Forearm Phantoms. When the true thickness was 1 mm, the smallest percentage error using these three
methods was 152.2%, 19.3% and 22.8%, respectively. The error decreased to 18.9%, 0.3% and -0.3%,
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respectively when the true thickness became 2 mm. It should be noted that these error levels were from the
best estimations under specific scanning conditions which usually could not be met in the clinical CT scanning
process. Generally speaking, the local thresholding method proposed in this study is more accurate than the
global thresholding method and the 50% relative threshold method in the literature. It may not be as accurate
as the model based methods in [16-19], but is still at an acceptable level. However, the accuracy of methods in
references [16-19] was quite sensitive to the assumed cortex BMD. An 20% increase of the assumed cortex BMD
could lead to an increase of estimation error from +4.3% to -13.1% under the same condition [18]. In contrast,
the local thresholding method was more robust as no assumed cortex BMD was needed.

The complex model-based methods mainly focus on the measurement of bone material density or disease
diagnosis, such as osteoporosis. The regions of interest are small local areas where fractures are prone to
happen. In this study, we focused more on the FE modeling to provide better computational human body
models, thus the entire bone is of great concern. Due to radiation dose restriction, resolution of clinical CTs of
the entire bone is inferior. Compared the image pixel sizes in this study (0.623 to 1.079 mm) to that mentioned
in [16] (0.589 mm), the model-based techniques may not be robust in low resolution clinical CTs. Time efficiency
is also important when it comes to modeling. It took a desktop PC around 5 min to process thickness values for
17,000 locations on the femoral neck alone in [16] but less than 1 min to process 9,140 locations on the entire
femur in this study. Therefore, even if some complex model-based methods can estimate cortex thickness in
sub-millimetre level if condition permits, the local thresholding method proposed in this study that can
efficiently estimate thickness results at an acceptable accuracy level still has great potentials in the field.

In this study, two different cortical coefficients were recommended for thin-cortex and thick-cortex areas. In
thin-cortex areas, the gap between HU, and HU_ was smaller than that in thick-cortex areas, but HU_ was

similar in all areas. This presented a dilemma, in which a lower K was expected for HU profiles in thick-cortex

areas but this might overestimate the thickness in thin-cortex areas and vice versa. In order to resolve this issue,
thin-cortex and thick-cortex areas were studied separately. Reference [22] used the similar local thresholding
method to quantify the cortical bone thickness for human ribs. The average measurement thickness value from
the PMHS was 0.796 mm indicating cortex in human ribs was very thin. The cortex coefficient was 0.808 in their
study which is close to the value of 0.860 in this study. In thick-cortex areas, a recommended threshold to
accurately segment the bone geometry was 49% of the difference of the density between the adjacent tissues
[13]. This percentage could be treated as the cortex coefficient K which was again close to the value of

0.522 in this study.

Even though in the thin-cortex areas, the global thresholding method was not reliable, it could still provide
acceptable results in the bone shaft areas with a properly selected threshold value. Following the optimisation
procedure in this paper, the threshold value can be set to 770. The mean squared error is 0.154 mm?compared
to 0.112 mm?using the local thresholding method in the femur shaft area (cross sections B to F). One of the
major deficiencies of the global thresholding method is that it cannot guarantee non-zero thickness values at all
nodes/points in the model. If this happens, an arbitrary value is usually specified which can introduce obvious
errors.

The femur and tibia thickness models did not have high R-squared values. It indicated that the variances in
femur and tibia cortical thickness are not well accounted by the current predictors. Therefore, more subject
characteristics should be included as predictors in the regression model to increase the correlation.
Bone-related diseases, such as osteoporosis and eating habits, may have significant effects on cortical bone
thickness distribution. This study indicated that BMI played a significant role in the femur cortical thickness
distribution which agreed with the conclusion in [8]. Age was also found to be a significant factor in this study
which is not surprising. In [23], it was concluded that the cortical thickness reduced as age advanced for women
while cortical thickness was similar at all ages for men. Cortex generally becomes thinner as healthy adults age
due to the expansion of marrow area [24]. No results of tibia regression models were given in [8], but this study
indicated that BMI was not a significant predictor in tibia cortical thickness.

Several limitations existed in this study. First, only one PMHS was used to calibrate and validate the cortex
coefficient. More PMHS will be needed to calibrate the cortex coefficient and validate the proposed method on
a larger scale. The sample size of female subjects was small, and no female subjects aged from 30 to 40 were
included in this study. Future work will include adding more female clinical CTs to the data set. However, the
current sample is at the same level as the previous study (62 male subjects and 36 female subjects in [8]). In the

cor ’
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future, the established parametric external geometry models and thickness models can be integrated as part of
the parametric whole-body human body model. Future work may also include extending the proposed method
to other body regions.

V. CONCLUSIONS

This study proposed a new local thresholding method to accurately and efficiently estimate cortical bone
thickness using clinical CT scans and a method to validate the thickness calculation against experimental results.
This study also developed a parametric cortical thickness model accounting for sex, age, stature and BMI effects
for human femur and tibia. The models developed in this study can serve as a statistical basis for building
parametric FE human models representing a diverse population.
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