IRC-17-108 IRCOBI conference 2017

Micro-model to Evaluate Alveolar Wall Mechanical Properties from Pressure-Volume Response

Dilaver Singh, Duane S. Cronin, Arthur S. Slutsky

I. INTRODUCTION

The lungs, being responsible for oxygen exchange through respiration, are critical to short- and long-term
health. Physical injury to the lungs can manifest in many ways and through a wide range of loading conditions,
from ventilator-induced lung injury [1], to blunt impacts [2] and blast exposures [3]. To understand potential
injury mechanisms of lung tissue that are relevant to biomechanics, it is first necessary to understand alveolar
mechanics. The mechanical properties of human lung tissue at the alveolar scale are not well characterised in the
literature, with most of the characterisation done at the bulk tissue scale. Furthermore, existing computational
models for injury prediction typically use properties measured on excised tissue samples, rather than in situ. In
general, the constitutive properties of alveolar tissue are a limitation of previous micro-scale and macro-scale
models of the lungs.

Alveolar expansion during respiration is governed by a complex interaction of several factors, including
alveolar wall elasticity, surface tension forces in the alveoli, pulmonary surfactant concentration, and pressure
differentials driven by contraction of the thoracic diaphragm. Sugihara et al. [4] performed uniaxial tension tests
on excised samples of alveolar wall tissue, but did not consider pre-strain effects that are present in situ. Uniquely,
the nature of the lungs allows for the mechanical properties to also be characterised by pressure-volume
response. Furthermore, the lungs can be pressurised in saline solution, which eliminates surface tension effects,
such that the resistance to expansion of the alveoli is provided solely by the tissue walls. Clements et al. [5]
performed such an experiment, using saline-filled human lungs, to separate and measure the contributions of
tissue elasticity and surface tension on the pressure-volume response of whole lungs and single alveoli. The
specific aim of this study was to identify the constitutive properties of lung alveolar wall tissue, using a finite
element (FE) model at the alveolar scale, and existing pressure-volume data.

Il. METHODS

A model of one alveolus was developed and analysed using a commercial explicit FE code (LS-DYNA, v971,
R6.1.1, LSTC). The model consists of a tetrakaidecahedron-shaped alveolus [6] (shaped to facilitate future work
in investigating alveolar clusters), with an opening at one face (Fig. 1, right). The alveolus model has an average
diameter of 200um and wall thickness of 12um, to match human alveoli [7], and is comprised of single integration
point hexahedral elements with an average element size of approximately 0.01mm.
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Fig. 1. Lung FE models from the whole lung to alveolar scale.
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In the first instance of the model presented in this study, surface tension effects were not considered. The
tissue was modelled using an Ogden constitutive model, with parameters to fit the stress-strain response
measured on excised alveolar wall tissue by Sugihara et al. [4]. The pressure inside the alveolus model was
increased gradually by applying a uniform stress on the inside surfaces, and the volume change of the model was
monitored. If the material properties of the tissue were correct, the pressure-volume response of the model
should match the saline-filled pressure-volume curve of one alveolus from Clements et al. [5].

I1l. INITIAL FINDINGS

The pressure-volume response of the alveolus model using the original data from Sugihara et al. [4] was more
compliant than the curve from Clements et al. [4] (Fig. 2, left). An optimisation technique (LS-OPT, LSTC) was
applied to identify the Ogden material parameters. The optimisation methodology used a d-optimal sampling
scheme and eight iterations, which achieved convergence. The optimised material model (Table 1) produced a
pressure-volume response in the model that closely matched the experimental curve (Fig. 2, left). The stress-
stretch curve of the optimised Ogden model was similar to the initial Ogden fit, although shifted to the left (Fig.
2, right, solid line).
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Fig. 2. Pressure-volume (left) and stress-stretch (right) curves for initial and optimised Ogden models.

TABLE |
OGDEN PARAMETERS OF OPTIMISED FIT
Parameter: | Density (kg/m3) | Poisson’s Ratio U1 M2 o (o)
Value: 1.050 0.499 0.005 0.949 16.70 2.40
IV. DISCUSSION

The stress-strain curve of the optimised Ogden material model, which produced a biofidelic pressure-volume
response in the alveolar model, had a similar shape to the uniaxial tension data from Sugihara et al. [4], although
shifted to the left by 12% in terms of stretch. Since the experiment used excised samples, which were not pre-
strained, the initial stress in the tissue was absent from the measured mechanical properties. The good agreement
between the optimised stress-stretch curve, which used an independent data source for the alveolar pressure-
volume response, and the experimental stress-stretch curve from [4] demonstrates the importance of initial
stress in the tissue.

Based on these results, the contribution of alveolar expansion response from the alveolar wall tissue has been
modelled successfully, and is represented by the Ogden material model presented. Future work will incorporate
surface tension effects to create an alveolar-scale model of the lung for injury evaluation.
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