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Correlation among Seatbelt Load, Chest Deflection, Rib Fracture and Internal Organ Strain in Frontal
Collisions with Human Body Finite Element Models

Yuichi Kitagawa, Tsuyoshi Yasuki

Abstract The chest is the most frequently injured body region in fatal and severe injury frontal collisions,
and mid-sternum deflection is used as an indicator for assessing the chest injury risk. It is understood that a
seatbelt load limiter helps reduce the magnitude of deflection. Therefore, the aim of this study was to examine
the correlation between the seatbelt load and the mid-sternum deflection and other possible indicators for
estimating chest injury risk. A total of twenty-one frontal collision simulations were conducted changing
seatbelt parameters such as the load limiter value, the airbag pressure and the seatbelt type. The seatbelt load,
the mid-sternum deflection, the local chest deflections, the number of rib fractures and the principal strain in
the internal organs were calculated using human body finite element (FE) models: THUMS Version 4 AFQ5,
AMS50 and AM95. The results indicated that the mid-sternum deflection was not necessarily reduced by solely
lowering the load limiter value but was determined by the combination of the seatbelt load and the airbag load.
A significant correlation was found between the injury risk and the local deflection close to the injury location.
The calculated local chest deflections at multiple locations indicated relative injury risk to the internal organs
under the given loading condition.

Keywords chest deflection, frontal collision, human body FE model, seatbelt load

I. INTRODUCTION

The head and chest are the most frequently injured body regions in fatal traffic accidents. Further, vehicle
occupant injuries in Japan are characterized by higher risk of chest injury compared to pedestrians and cyclists
[1]. In frontal collisions, the occupant chest is protected by the seatbelt and the airbag. The seatbelt provides
initial restraint to the occupant body from the beginning of collision while the airbag can distribute the
restraining load over the anterior chest. The benefit of a combination of seatbelt and airbag was examined in
past studies [2-3]. Since then, efforts have been made to improve these safety devices to further reduce chest
injury risk. One is a seatbelt load limiter for the conventional three-point seatbelt system. Accident data
analysis shows a benefit of seatbelt load limiters in frontal collisions, and a load limiter value of 4kN was
proposed to achieve a good balance with the airbag [4-6]. New technologies such as a four-point seatbelt
system and an inflatable seatbelt (airbelt) system also have been proposed. Past studies have shown the
effectiveness of such new seatbelt systems in mitigating chest injury risk [7-8].

In regulation and assessment tests, chest deflection is commonly used as an indicator for assessing chest
injury risk. In the Hybrid Ill dummy, deflection is measured at the mid-sternum in frontal collision tests. While
the Hybrid Il chest was shown to effectively simulate human chest deflection against a cylindrical impact, it is
not deformable against seatbelt loading [9]. This is because the Hybrid Ill was originally designed assuming
contact with the steering wheel hub. Because the seatbelt and the airbag are the major sources of load applied
to the chest in recent vehicle models, another indicator was proposed aiming to correct the chest deflection
value measured on the Hybrid Il using the seatbelt load measured in the same test [10]. This indicator
essentially encourages lowering the load limiter value. However, the side effect to lower the seatbelt load
limiter is greater occupant forward displacement. A past study indicated a beneficial supplemental effect of an
airbag with a low load limiter [11], but this study was conducted before the depowered airbag was mandated.
Actual benefit of lowering the seatbelt load in a state-of-the-art restraint system is not well understood.
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The first purpose of this study was to verify the benefit of load limiters for chest protection in frontal
collisions with modern restraints. Car frontal collision simulations were conducted using human body FE models
to examine the correlation between the seatbelt load and mid-sternum deflection. The second purpose was to
discuss possible indicators for estimating chest injury risk. The correlation between candidate indicators and
injury values was examined using the simulation results. The candidate indicators were the seatbelt load and
local chest deflections; the injury values were the number of rib fractures and the principal strain in the internal
organs.

Il. METHODS

The numerical simulations were conducted assuming a head-on collision of a mid-size sedan car against a flat
rigid wall at a speed of 55km/h. The study focused on the occupant in the driver’s seat wearing the seatbelt
with the airbag deployed during the collision. Figure 1 shows the simulation model to be run with the LS-DYNA
V971. The model represented the front part of the car cabin. Because it was assumed that deformation of the
cabin was negligible, a rigid material was defined for the body side sill, pillars, front header, windshield glass,
firewall and floor. Interior parts, including steering wheel and hub, instrument panel and driver seat, were
considered to be deformable. Rods and brackets supporting the interior parts were also considered to be
deformable. Connections among the parts such as fasteners and welds were imitated at the same locations but
without breaking or tearing. These conditions are commonly used when simulating frontal impact sled tests.

This study used the THUMS Version 4 Occupant Model for representing the occupant in the driver seat. The
THUMS was jointly developed by TOYOTA MOTOR CORPORATION and TOYOTA Central R&D Labs., Inc. The
advanced feature new to Version 4 is internal organs. Injury risk was estimated based on the strain calculated in
each organ. Bony fracture was simulated by defining a strain criterion in the material model. The impact
response of the THUMS Version 4 was previously validated to human subject tests from the literature [12-13].
In addition, two new modes were validated for this study: thorax response against seatbelt loading and
(simulated) airbag loading, and whole body response in frontal impact.

=

Fig. 1. Frontal Collision Simulation Model.

Validation of Thorax Response

Kent et al. [9] examined force-deflection responses of the thorax with post-mortem human subjects (PMHS).
The test subjects were placed on a table top apparatus, and the anterior thorax was subjected to four loading
conditions: single diagonal belt loading, double diagonal belt loading, distributed loading and a hub loading. The
diagonal belt (5cm wide) represented the shoulder component of a three-point seatbelt, while a 20.3-cm-wide
belt in the distributed loading imitated an airbag. In this study, force-deflection responses of the THUMS thorax
were verified under the single diagonal belt loading and the distributed loading. Figure 2 shows the simulation
model duplicating the loading conditions in the tests. The torso part (with the head) of THUMS Version 4 AM50
was placed on a rigid surface. The belt was modeled with shell (membrane) elements and was wrapped around
the torso using a fitting tool. Seatbelt elements were used to represent the cables attached to both ends of the
belt. The end of the seatbelt was pulled down through a slip-ring. Pulling force was applied to the seatbelt end
simulating the force time history in the test. The chest deflection was monitored at a node on the belt over the
mid-sternum; the reaction force was calculated at the rigid surface. The average stature of the fifteen subjects
tested was 169.7cm with standard deviation (S.D.) of 8.5cm; the average mass value was 68.3kg with S.D. of
17.0kg. The height and the mass values of THUMS AM50 were 178cm and 74kg, respectively. These values fell
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within the range of S.D. of the subject size. The average age of the subjects was 69.5 with S.D. of 10.5. It was
reported in the literature that the age had a small influence on the thoracic stiffness and corridors. Figure 3
compares the calculated force-deflection responses of the THUMS thorax and the test corridors. Because the
THUMS calculated curve generally fell within the test corridors in both single belt loading and distributed
loading, this study therefore assumed that the THUMS thorax was capable of simulating force-deflection of the
human thorax against seatbelt loading and airbag loading.
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Fig. 2. Validation Model for Thorax Response. Fig. 3. Comparison of Thorax Force-Deflection Responses

between THUMS and PMHS.

Validation of Whole Body Response

Shaw et al. [14-16] conducted frontal impact sled tests at 40km/h with PMHS. Each subject was placed on a
planar rigid seat with the head and torso supported to approximate the seated posture of a front seat occupant.
The sled was equipped with a three-point seatbelt but no airbag. The shoulder and lap belts were separately
adjustable, and neither a seatbelt retractor nor a load limiter was installed. A rigid knee bolster was closely
placed in front of the knee. Each foot was supported by a rigid footrest with ankle straps. A total of eight
subjects were tested. For three subjects, the impact kinematics was monitored using a three-dimensional
motion capture system. Load cells recorded belt load, knee bolster load and other loads. The number of bony
fractures was reported for all subjects. The average stature and mass of the subjects were 179cm and 76kg,
respectively, while those of THUMS AM50 were 178cm and 74kg. For the THUMS validation, the bone
properties were adjusted for average subject age (54.0 yrs) while the body size was not scaled. The initial
posture (spine alignment) of THUMS was adjusted so as to imitate that of the test subject. Figure 4 shows the
entire model used for simulating the sled tests. The seatbelt was the only device which restrained the upper
body. The elongation property of the belt and the anchor locations were carefully duplicated in the model. The
impact kinematics was obtained from the nodal displacement on THUMS. The seatbelt load was output from a
seatbelt element close to the measuring point; the knee bolster load was calculated at the contact model
defined between the knee and the bolster. Figure 5 compares the impact kinematics between the test subject
and the THUMS model viewed from lateral. The figure shows trajectories of the head, T1, T8, L2, L4 and pelvis
for the three subjects tested and those calculated by THUMS. The calculated trajectory fell within the range of
three subjects’ data from the initial point to maximum forward excursion. Figure 6 compares the time history
curves of chest deflections between test subjects and the model measured at the seatbelt. Figure 7 compares
the number of bony fractures between the test subjects and the model. Because the kinematics, chest
deflections and number of rib fractures simulated by the model were within the range of the test data, this
study therefore assumed that the THUMS thorax was capable of simulating impact kinematics of an occupant in
frontal collisions and bony fractures in the thorax region.

Modeling of Restraint System

In frontal collision simulations, the THUMS Version 4 AFO5, AM50 and AM95 were used for representing small
female, midsize male and large male occupants. The seat position was adjusted for each occupant so as to take

- 284 -



IRC-13-36 IRCOBI Conference 2013

-1000
oo+
800 |-
Shoulder Bkt E 7o0 F
(¥ =#= Test 1353
£ 600 |- =i~ Test 1358
el =m= Test 1360
(=1
& s |- == THUNE
W
X3
400 -
1\¥?/ Acceleration 300 0
4 Enee Bokter 200 ; ; \ \
Foot Rest 0 40 WO WD W0 0 -100
Coomdinate ¥ fnm]
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Fig. 6. Comparison of Trajectories between THUMS and Fig. 7. Comparison of Bony Fractures in THUMS
PMHS. and PMHS.

a natural driving posture with both hands placed on the steering wheel and the feet on the pedals. The seat was
at the mid-track position of the slide rails for AM50, 120mm forward for AFO5 and 20mm rearward for AM95,
respectively. A three-point seatbelt was fitted to the body surface for each occupant. One end was connected
to a retractor; the other end was fixed to an anchor point on the body side sill. A slip ring was mounted to the
upper part of the B-pillar; a tongue and a buckle were attached to a seat side frame. The retractor model
mimicked the functions of pretensioner and load limiter. The pretensioner load was assumed to be 1.5kN in all
cases, while the load limiter value was varied parametrically from 2kN to 6kN. Two other seatbelt types were
also simulated in this study: a four-point seatbelt and an airbelt. The four-point seatbelt had secondary
shoulder webbing crossing the original one. One end was on the floor; the other end was fixed to the body side
sill through a secondary buckle. Another slip ring was mounted to the upper part of a seatback frame. The
airbelt had an airbag at the shoulder part of the three-point seatbelt. Figure 8 shows the seatbelt models.
Figures 9 and 10 show the driver airbag model and the airbelt model, respectively, with the initial and the
deployed geometries. Initial folding of the airbags was not simulated. The study assumed that a crash sensor
activated the restraint system at 0.018 seconds after the initiation of frontal collision. Deployment of the driver
airbag was simulated using a control volume method in LS-DYNA.
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[(a) Three-Faoirt Seathelt (b} Four-Point Seatbelt (c) Airbelt
Fig. 8. Seatbelt Models.

(a)Iritial Geometry  (b) Deployed Geometry {a) Initial Geometry (b)) Deployed Geometry
Fig. 9. Driver Airbag Model. Fig. 10. Airbelt Model.

Simulation Matrix

The study consisted of three parts. For the first part, all three models (AFO5, AM50 and AM95) were restrained
with the three-point belt with the load limiter value varied from 2kN to 6kN. The second and third parts focused
on the AM50 occupant. In the second part, the airbag pressure was varied with load limiter value to change
load sharing between two systems: increased airbag load with decreased seatbelt load or decreased airbag load
with increased seatbelt load. In the third part, the four-point seatbelt and the airbelt were installed. A load
limiter value of 2kN was assumed for each retractor of the four-point seatbelt. The total restraining load was
equivalent to that of the three-point seatbelt. A load limiter value of 4kN was assumed for the retractor of the
airbelt. Table | summarizes the simulation matrix. A total of twenty-one simulations were conducted. Figure 11
shows nine points on the thorax at which local deflections were calculated. Note combinations of anterior
points and posterior points. The deflection was calculated as a percentage of distance change between the
anterior point and the posterior point. Figure 12 shows the internal organs of the three models. In frontal
collisions, injuries are commonly found in the lungs, heart, spleen and liver. The maximum principal strains of
these organs were calculated to estimate injury risk to these organs. The seatbelt load was output from an
element on the webbing between the slip ring and the shoulder. The airbag load was calculated as a contact
force between the airbag and the anterior thorax. The forward displacement of thorax was monitored at T7.
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Fig. 11. Calculation Points of Local Chest Deflections.
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TABLE |
Simulation Matrix

Case | Occupant Seatbelt Pretensioner | Load Limiter Airbag welocity

1 2kN

2 kN

3 AFOS kN

4 Sk

5 [

& 2kN

7 kN

g AMS0 Ak Standard

9 Three-Paint SkM Pressure
10 &kN

11 1.5kM 2kN 55km/h
12 [Duter) kM

13 AMSS kN

14 SkN

15 akMN

16 2k Pressure x1.4
17 3kN Pressurex1.2
18 AMS0 SkM Pressure x0.8
19 gk Pressure x0.6
20 Four-Paint 2kM+2kN standard
21 Airbelt 4k Pressure

Ill. RESULTS

Impact kinematics of different size occupants with different load limiter values, airbag pressures and seatbelt
types are shown in the Appendix. Figure 13 shows the impact kinematics of the AM50 occupant at 0.09 sec with
load limiter values of 2, 4 and 6kN (Cases 6, 8 and 10). Greater forward excursion was found with a load limiter
of 2kN compared to those in the other cases. Airbag deformation appeared greatest with a load limiter of 2kN.
Figure 14 shows the thorax region in the mid-sagittal section view. The chest contacted the lower part of the
steering wheel with a load limiter of 2kN, while no steering wheel contact occurred in the other cases. Figure 15
shows the skeletal deformation of the thorax in Cases 6, 8 and 10. No rib fracture was predicted in Case 6; a
fracture to left rib 1 was predicted in Case 8; fractures to left ribs 1-4 were predicted in Case 10. Figure 16
shows distribution of the maximum principal strain of the internal organs in Case 8. High strain values were
found at the anterior border of the right lung, medial surface of the left lung, superior region of the heart
(around the insertion area of the aorta), medial surface of the spleen and the superior region of the liver
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Case 6 (Load Limiter: 2 kM) Case 8 (Load Limiter: 4 kM) Case 10 (Load Limiter: & kM)
Fig. 13. Impact Kinematics of THUMS V4 AM50 Occupant (0.09 sec).

Case & (Load Limiter: 2 kM) Case 8 (Load Limiter: 4 kM) Case 10 (Load Limiter: & kM)
Fig. 14. Mid-Sagittal Section View of Thorax Region —AM50- (0.09 sec).
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Fig. 15. Skeletal Deformation of Thorax (0.09 sec) and Predicted Rib Fractures.
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Fig. 16. Distribution of Maximum Principal Strain of Internal Organs (Case 8, 0.09 sec).

(near the coronary ligament). Figure 17 compares the kinematics among AF05, AM50 and AM95 with a load
limiter of 4kN at the time of maximum forward excursion of the chest (Cases 3, 8 and 13). Flexion of the AF05
upper body was smaller relative to the AM50 and AM95. The sagittal section of the thorax region is shown in
Figure 18. The chest contacted the lower part of the steering wheel in AM95 even with a load limiter of 4kN.
Figure 19 shows the mid-sagittal section view of the AM50 thorax at 0.09 sec with varied load sharing between
seatbelt and airbag for study Part 2 (Cases 16, 8 and 19). Some distance was left between the chest and the
steering wheel in all three cases. Figure 20 shows the skeletal deformation of the thorax for these cases. One
rib fracture was predicted in Cases 16 and 8 while three fractures were predicted in Case 19. Figure 21
compares the impact kinematics between the three-point seatbelt, four-point seatbelt and airbelt for study Part
3 (Cases 8, 20 and 21). No significant difference was found in upper body excursion.
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Case 3 [AF0S5, Load Limiter: 4 kM) Case 8 [(AMS0, Load Limiter: 4 kM) Case 13 (AMAE, Load Limiter: 4 kM)

Fig. 17. Comparison of Impact Kinematics among AF05, AM50 and AM95.

Case 3 [(AF0S, Load Limiter: 4 kM) Casze 8 (aM50, Load Limiter; 4 kN)  Case 13 (AM3I5, Load Lirmiter: 4 ki)
Fig. 18. Comparison of Thorax Mid-Sagittal Section View among AF05, AM50 and AM95.
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Fig. 19. Sagittal Section View of Thorax Region —AM50 with Airbag Pressure Changed- (0.09 sec).
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Fig. 20. Skeletal Deformation of Thorax (0.09 sec) and Predicted Rib Fractures.

Case 8 (Three-Point Seathelt) Case 20 (Four-Point Seathelt) Case 21 (Airbelt)
Fig. 21. Impact Kinematics of THUMS V4 AM50 Occupant with Different Seatbelt Type (0.09 sec).
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Time history curves for seatbelt load, airbag load, chest deflection and forward displacement of the chest are
plotted in the Appendix. Figure 22 plots the time history curves of seatbelt and airbag loads for the AM50
occupant with a load limiter value of 4kN (Case 8). The seatbelt load rose at 0.018 sec when the pretensioner
was activated. Its magnitude increased as the occupant body moved forward. After reaching 4kN, the seatbelt
load held constant as evidenced by the flat-topped profile. The airbag load rose at around 0.04 sec and
increased as the upper body engaged it, showing a triangular profile with a maximum peak at around 0.08 sec.
Figure 23 plots the time history curve of chest deflection at the mid sternum (SM) for the same case (Case 8).
An initial rise was due to the seatbelt load but later was increased by both seatbelt and airbag loads. The
deflection profile had a peak at around 0.08 sec corresponding to that of airbag load. Figure 24 plots the
maximum values of local chest deflections for the same case (Case 8). Greater deflection was noted along the
shoulder belt path from left superior (LU) to right inferior (RL). Figure 25 plots the time history curves of the
maximum principal strain in the lungs, heart, spleen and liver. The strain values were calculated at locations
specified in Figure 16. The maximum values of seatbelt load, airbag load, chest deflections, forward chest
displacement, internal organ strain and the number of rib fractures are summarized in the Appendix.
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Fig. 22. Seatbelt Load and Airbag Load (Case 8). Fig. 23. Chest Deflection (Case 8).
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Fig. 24. Local Chest Deflection (Case 8). Fig. 25. Strain of Internal Organs (Case 8).

Figure 26 plots the maximum values of chest deflection (SM) and forward chest displacement with respect to
the load limiter values for AFO5, AM50 and AM95 (Cases 1-15). As the load limiter value was lower in AF05, the
chest deflection was smaller but the forward displacement was greater. For AM50 and AM95, a similar trend
was found in forward displacement. However, the chest deflection was not necessarily the smallest at the
lowest load limiter value. In AMS50, the chest deflection with a 2kN load limiter was almost the same as with
3kN. In AM95, the chest deflection with a 2kN load limiter was greater than with 3kN or 4kN. It should be
noted that the chest reached the lower part of the steering wheel in these cases. Figure 27 plots the maximum
values of seatbelt load, airbag load, chest deflection (SM) and forward chest displacement for the AM50 cases
with the airbag pressure changed (Cases 8, 16-19). With smaller load limiter value the seatbelt load decreased
while the airbag load increased. Relatively small difference was found in chest deflection and forward
displacement of the chest among the cases.
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Fig. 26. Chest Deflection and Forward Displacement w.r.t. Load Limiter Value.
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Fig. 27. Seatbelt Load, Airbag Load, Chest Deflection and Forward Displacement w.r.t. Load Limiter Value with

variable airbag pressure.

Figure 28 compares the maximum values of seatbelt load, airbag load and chest deflection among the AM50
cases with three-point seatbelt, four-point seatbelt and airbelt (Cases 8, 20 and 21). The seatbelt loads were

similar among these three cases in part because the same load limiter values were given.

The airbag load

decreased with the four-point belt (Case 20) and decreased further with the airbag (Case 21). Similarly, smaller
chest deflection was found with the four-point belt and airbelt compared to the standard restraints.
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Fig. 28. Comparison of Seatbelt Load, Airbag Load, Chest Deflection among Seatbelt Types.
(Note that the seatbelt load in Case 20 was the sum of two shoulder belts.)
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The correlation between candidate indicators and injury values was examined. The candidate indicators were
the seatbelt load and local chest deflections; the injury values were the number of rib fractures and internal
organ principal strain. Table Il summarizes the correlation for the AM50 cases (Cases 6-10 and 16-21). The
correlation coefficients and p-values were calculated using the Pearson product-moment correlation. The study
assumed that there was a significant correlation between the indicator and the injury value when the coefficient
value was greater than or equal to 0.7 with a p-value smaller than 0.05. A negative coefficient value indicated
that the injury value decreased when the indicator increased. This was a second order effect possibly due to the
incompressible characteristics of the internal organs such that a compressive load to one side caused expansion
on the other side. In this study, therefore, only positive coefficient values were discussed.

With the number of rib fractures, a significant correlation was found for the seatbelt load, left superior
deflection (LU) and left middle deflection (LM). The left superior deflection (LU) has the highest correlation
among three indicators. With the strain of the right lung, a significant correlation was found for the right
inferior deflection (RL), mid sternum deflection (SM) and inferior sternum deflection (SL). With the strain of the
left lung, a significant correlation was found for the right inferior deflection (RL), mid sternum deflection (SM)
and left superior deflection (LU). The heart strain correlated with the right inferior deflection (RL), mid sternum
deflection (SM) and inferior sternum deflection (SL). With the spleen strain, the seatbelt load and left superior
deflection (LU) showed a significant correlation. Deflections at the right inferior (RL), mid sternum (SM) and
inferior sternum (SL) showed a significant correlation with the liver strain.

TABLE Il
Correlation between Indicators and Injury Values
Lﬂ%jg Correlation v—— ndicators
Lond RL R FL =0 SM = Lu Lr LL

Coefficient || 0.84 -0.86 -0.68 0.58 0,00 0.60 0.52 0.95 0.84 -0.58

Rib X prvalue || 0.0000 | 00000 | 00007 | 000S6 | 09840 | 0.0041 | 0.0143 | 00000 | 0.0000 | 00062
Coefficient || 0.16 -0,30 -0.03 0.95 -0.47 0.91 0.81 0.26 0.3 -0.21

L prvalue || 06366 | 03636 | 0.9310 | 00000 | O0.1842 | 00001 | 0.0025 | 0.2829 | 03170 | 0.3487
Coefficient | 0.52 -0.69 -0.49 0.83 -0.26 0.79 0.64 0.76 0.64 -0.65

rnat pvalue || 0.0988 | 0.0183 | 01241 | 00015 | 04293 | 00040 | 00330 | 00065 | 0.0356 | 0.0309
Coefficient | 0,11 -0.24 0.04 0.96 -0.55 0.93 0.86 0.32 0.32 -0.27

reart pvalue || 0.7533 | 04764 | 09184 | 00000 |0.0.0806| 0.0000 | 00007 | 03295 | 0.3307 | 0.4276

Coefficient || 0.80 -0,93 -0.88 0.28 0.07 0.24 0.11 0.84 0.53 -0,79

Spleen prvalue || 0.0031 | 0.0000 | 0.0004 | 04040 | 08297 | 04849 | 07357 | 0.0012 | 00921 | 0.0037
Coefficient | 0.05 -0.07 0.15 0.77 -0.33 0.77 0.76 0.31 0.55 -0.05

Her pvalue || 0.8768 | 08280 | 06648 | 00060 | 03162 | 00051 | 00065 | 03599 | 0.0216 | 0.8783

IV. DISCUSSION

The first finding in this study was that a lower load limiter value did not necessarily give the smallest chest
deflection. A lower seatbelt load itself reduced the chest deflection but also increased the forward
displacement of the chest (Cases 1-15). In AM50 and AM95, a greater forward displacement caused contact
between the chest and the steering wheel later in the restraint phase (Cases 6, 11 and 12). When the airbag
pressure was changed to help reduce forward chest displacement (Cases 16-19), the resultant chest deflection
was not smaller with a reduced load limiter. These results derived from the fact that both seatbelt load and
airbag load contributed to chest deflection. Assuming an equivalent forward motion of the chest, the load
limiter value mostly changes the ratio of load sharing between the seatbelt and the airbag. A higher seatbelt
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load increased the left superior deflection (LU), and a greater deflection raises fracture risk. This was evidenced
by Cases 18 and 19, in which multiple rib fractures were predicted at load limiter values of 5 and 6kN. Because
little difference was found among 2, 3 and 4kN (Cases 16, 17 and 8), a load limiter value of 4kN appeared low
enough in terms of local chest deflection and rib fracture risk.

The chest deflections with the four-point seatbelt and the airbelt were smaller than that with the three-point
seatbelt despite similar load limiter values (Cases 20 and 21). The benefit of the four-point seatbelt was to
engage both shoulders. It was effective for restraining the occupant due to the relatively high stiffness of the
shoulder-clavicle area compared to the chest. The beneficial feature of the airbelt was its increased contact
area with the shoulder-chest. Additionally, the airbelt deployment worked as a secondary pretensioner and
separated the lower portion of the shoulder belt from the inferior chest. The performance of the four-point
seatbelt and airbelt could change depending on factors such as the rigidity of the slip ring for the secondary belt
and the inflator power. The study results showed a potential effectiveness of the four-point seatbelt and airbelt
in reducing chest deflection under the simulated conditions.

The seatbelt load showed a significant correlation with the number of rib fractures and the principal strain of
spleen but not with strain of the other internal organs. The correlations with the local chest deflections varied
among the internal organs. Specifically, the strain of an internal organ correlated with the local deflection
around that part. Regarding rib fractures, the seatbelt load could be used to estimate a fracture risk at the left
superior area only. The occupant model used in this study assumed an adult person at middle age. Elderly
occupants are likely to sustain rib fractures along the seatbelt not only at the superior area but also at the
inferior area [17]. The injury risk to the inferior chest could be missed by monitoring only the seatbelt load.
The skeletal parts and internal organs are located at various areas of the chest. The study results suggested that
the chest injury risk should be assessed by monitoring deflections at multiple points on the chest.

The study has the following limitations. The model validations were conducted for the limited number of
literature data. The calculated impact kinematics, force-deflection responses and number of bony fractures
were compared to the test data, but the validity of calculated internal organ strain was not examined. The
study assumed that the calculated strain indicated relative loading severity among internal organs. The model
simulated a head-on collision of a vehicle with a single deceleration pulse without deformation of the cabin
structure. It did not necessarily represent a general trend of injury scenarios in actual car crashes. The study
results indicated a possible trend of occupant chest injury under the simulated impact conditions.

V. CONCLUSIONS

The study conducted frontal collision simulations using the THUMS Version 4 AF05, AM50 and AM95
Occupant Models in order to examine the effectiveness of seatbelt load limiters in reducing chest deflection and
to analyze the correlation between chest injury indicators and injury values. The simulation results indicated
that lowering the load limiter value, for instance from 4 kN to 2 kN, did not necessarily reduce the chest
deflection. The chest deflection was not dominated by the seatbelt load but generated by both seatbelt load
and airbag load. Even with the same load limiter value, smaller chest deflection was generated with the
four-point seatbelt and the airbelt. The seatbelt load showed a significant correlation with the number of rib
fractures at the left superior area and with the principal strain of the spleen, but not with strains in the other
internal organs. The internal organ strain generally correlated with the deflection at the area of the site.
Neither the chest deflection at a particular location nor the seatbelt load calculated at the shoulder indicated
what internal organ was likely to sustain injury. The calculated local chest deflections at multiple locations
showed relative injury risk to the internal organs under the given loading condition.
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VII. Appendix

&F0S AR50 FAREL
Fig. A1l. THUMS Version 4 Occupant Models
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Fig. A2. Occupant Kinematics of AFO5 Occupant with 4 kN Load Limiter (Case 3).
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Fig. A3. Occupant Kinematics of AM50 Occupant with 4 kN Load Limiter (Case 8).
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Fig. A4. Occupant Kinematics of AM95 Occupant with 4 kN Load Limiter (Case 13).
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Fig. A5. Occupant Kinematics of AM50 Occupant with Four-Point Seatbelt (Case 20).
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Fig. A6. Occupant Kinematics of AM50 Occupant with Airbelt (Case 21).
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Fig. A7. Chest Deflection, Seatbelt Load, Airbag Load and Chest Forward Displacement of AFO5 Occupant with
Different Load Limiter Values (Case 1-5).
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Fig. A8. Chest Deflection, Seatbelt Load, Airbag Load and Chest Forward Displacement of AM50 Occupant with
Different Load Limiter Values (Case 6-10).
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Fig. A9. Chest Deflection, Seatbelt Load, Airbag Load and Chest Forward Displacement of AM95 Occupant with
Different Load Limiter Values (Case 11-15).
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Fig. A10. Chest Deflection, Seatbelt Load, Airbag Load and Chest Forward Displacement of AM50 Occupant with
Different Load Limiter Values (Case 16-19).
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Fig. A11. Comparison of Chest Deflection, Seatbelt Load, Airbag Load and Chest Forward Displacement between
Different Seatbelt Types (Case 8, 20 and 21).
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Fig. A12. Local Chest Deflection of AFO5 Occupant with Different Load Limiter Values (Case 1, 3 and 5).
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Fig. A13. Local Chest Deflection of AM50 Occupant with Different Load Limiter Values (Case 6, 8 and 10).
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Fig. Al14. Local Chest Deflection of AM95 Occupant with Different Load Limiter Values (Case 11, 13 and 15).
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Fig. A15. Local Chest Deflection of AM50 Occupant with Different Load Limiter Values (Case 16 and 19).
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Fig. A16. Local Chest Deflection of AM50 Occupant with Different Seatbelt Types (Case 20 and 21).
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Fig. A17. Max Principal Strain of Internal Organs (Case 1,3, 5, 6, 8, 10, 11, 13 and 15).
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Fig. A18. Max Principal Strain of Internal Organs (Case 16, 9, 20 and 21).
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(e} Spleen Strain ifi Liver Strain

Fig. A19. Correlation between Local Chest Deflections and Injury Values.
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TABLE Al
Max Values of Chest Deflection, Seatbelt Load, Airbag Load, Forward Displacement and No. of Rib Fractures

Case | Cccupant |Load Limiter | Chest Def, Featbelt Load | Airbag Load F. Displ Rib Fx

1 2kM 16.5% 1921M 1784M 201mm -

2 3k 18.2% 2892H 1591M 177 mm -

3 AFOS M 20.0% 3163M 1409M 160mim -

4 Sk 21.2% 3193H 1229M 149mm -

3 BlM 21.9% 3391 1202 147 mim -

B kM 19.9% 1914M S236M 3593mm -

7 3k 20.1% 2892H 4334M 259mm -

2 AMS0 M 21.1% 3776 721N 330mm L1

9 Sk 21.9% 4788M 2485M 207mm Li,L2,L2
10 BlM 23.0% S201mM 206590 288mm L1,LZ2,L3,L4
11 kM 20.1% 1926M SE812M 457 mm -

12 3kM 19.0% 2745M 4947 427 mm -

13 AMS5 M 12.8% 3896 4081M 400mm -

14 Sk 20.7 % 42320M 2493M F7emm -

15 BlM 23.2% SE91M 3395M 335mm -

15 kM 19.9% 1936M SGE14M 360mm L1

17 3kM 20.1% 283a6M 42331M 229mim L1

15 AMS0 Sk 21.9% 437 1M 2746MN 323mm L1,L2,L=
19 BlkM 23.0% 5100 2022M 219mm Li,L2,L2
20 4-Paoint ZkM+2kM 16.8% 4032M 3290M 201mm -
21 Ajrbelt Al 15.9% 373N 2361M 305mm L1
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TABLE All
Max Values of Local Chest Deflections at Nine Calculation Points

Case FL! I RL =10 S = Lu Lu LU
1 10,3 9.5 10.4 16.0 150 101 14.2 2.3 2.2
2 0.9 10.5 10.2 171 16.6 12.2 161 2.9 1.7
3 10.4 121 0.2 13.2 151 14.0 17.2 7.9 1.0
4 11.0 12.5 11.2 192 19.5 156 171 7.6 4.9
3 11.2 14.0 0.7 19.5 19.9 16.2 121 2.3 2.0
] 141 15.6 21.8 16.0 19.9 191 153.5 14.4 153.7
7 12,7 14.2 219 16.2 20.0 19.2 16.7 14.0 15.0
8 111 1=.2 225 16.9 21.0 20.4 19.0 14.4 13.9
9 0.9 11.7 225 17.2 21.9 22.0 25.7 17.1 13.8
10 0.0 11.7 23.6 17.2 232.0 235 28.6 21.4 13.8
11 13.1 11.2 239 16.6 151 16.5 11.4 11.7 23.0
12 12.8 9.0 201 17.0 17.2 13.2 13.6 1.7 23.0
12 11.6 8.8 32.0 171 15.9 12.2 16.6 7.8 24.7
14 0.8 8.6 329 154 18.5 13.7 17.8 7.4 25.6
15 0.3 01 333 19.2 207 15.5 21.1 0.1 23.2
16 14.4 16.4 221 17.9 21.7 21.9 16.4 14.5 20.1
17 13.2 15.0 22.3 17.2 21.2 20.9 16.9 14.3 17.4
12 .4 10.5 22.3 16.7 21.1 21.7 23.8 16.4 12.0
19 2.6 0.4 23.1 16.2 21.2 227 28.7 21.9 2.5
20 13.4 14.5 12.6 17.4 15.7 15.9 15.9 14.8 20.2
21 10.7 10.0 15.4 13.4 15.8 9.0 21.3 14.5 11.8
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Max Principal Strain Values of Internal Organs

TABLE Alll

IRCOBI Conference 2013

Casze Lung-F Ling-L Heart Spleen Liver
1 1.0z 1.15 0.35 1.12 0.25
2 1.05 1.24 0.62 1.15 0.45
3 1.15 1.26 0.6 1.13 0.51
4 1.19 128 0.65 1.11 0.61
3 1.20 124 0.66 1.14 0.67
B 0.72 0.7 Q.66 0.86 0.52
7 0.8z 0.78 0.628 0.95 0.46
2 0.52 0.81 0.69 1.03 0.46
9 0.20 0.e9 0.71 1.04 0.49
10 0.83 0.93 0.71 1.04 0.54
11 0.57 0.82 0,70 0.55 0.29
12 0.62 0.87 070 0.64 0.27
13 0.63 0.97 0.72 0.81 0.23
14 0.67 1.00 0.73 0.72 0.24
15 0.59 0.96 0.74 0.e1 0.29
15 0.78 0.79 0.68 0.20 0.54
17 0.81 0.79 0.69 0.91 0.42
15 0.51 0.20 0,70 1.07 0.47
19 0.281 0.92 0.70 1.02 0.532
20 0.49 0.52 0.32 0.es 0.42
21 0.57 0.73 0.37 1.03 0.42
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