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On the Mechanical Characterization of Human Humerus using Multi-scale Continuum Finite Element
Model

F. Vandenbulcke?, J. Rahmoun?, H. Morvan', H. Naceur’, P. Drazetic’, C. Fontaine?, R. Bry?

Abstract This paper is devoted to the characterization of human humerus behavior using a multi-scale
approach for the estimation of the ultimate impact load. First, we present the experimental tests on human
humeral bone in order to identify and quantitatively assess the mechanical properties. Then, we propose a
micromechanical modeling of the elastic anisotropic properties of the humerus based on the coupling between
the Mori-Tanaka homogenization scheme and a hex-shell Finite Element model. The obtained micromechanical
model is implemented via a UMAT routine within the explicit dynamic code LS-DYNA®. The obtained numerical
results show globally good agreement when compared to the experimental measurements.
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I. INTRODUCTION

Measurement of density, geometric properties and mechanical strength are important features when
evaluating and describing bone tissues. As one of the major functions of bone is to provide structural support
for the musculoskeletal system, a correct assessment of its mechanical strength is desirable in most
experiments that might alter the biological mechanisms regulating bone tissue [8]. More particularly,
mechanical properties of the humerus bone are of interest. A good understanding of bone mechanical behavior
allows to evaluate the fracture risk and to quantify an appropriate response for treatment [11]. This knowledge
may also help for choosing optimal fixation techniques and locations for prosthetic components and then
suggest optimized surgical procedures to preserve stronger bone to enhance implant fixation. However, in the
literature most of research studies have focused on femoral and tibia bone [12] and only few investigations
have been conducted on the humeral and radial bones [6, 8, 11].

The aim of the present work is to propose a consistent multi-scale approach for the accurate
characterization and modeling of mechanical human humerus material parameters under impact. The present
micromechanical model [10] is based on the coupling between the Mori-Tanaka homogenization scheme [9] for
the estimation of elastic properties of humeral bone using the Eshelby inclusion problem [3], and a 3D
hexahedral FE model [4] at the macro-level for the prediction of the global humerus response. The proposed
procedure consists in two stages: at first, we perform a local identification of the bone matrix material
parameters through the use of mechanical tension/compression testing on rectangular specimens extracted
directly from the humerus. Once the bone matrix material parameters (Young’s modulus, void aspect ratio,
porosity) are identified, a homogenized scheme is used within a finite element model to identify the
macroscopic anisotropic material parameters in longitudinal and transverse fiber directions. These macroscopic
anisotropic material parameters are then used, as material data, to evaluate the global response of a humerus
under impact.

The paper is structured as follows: the introduction is given in section 1. Section 2 presents the experimental
campaign on local specimens and the impact of the humerus using the drop tower device, followed with a
presentation of the main aspects of the multi-scale continuum finite element model. Results of humerus
material parameters identification and further results of the impact test are given in section 3. In section 4 we
discuss the relevance of the obtained results and assessments to be provided for further developments. Finally
some conclusions are drawn in section 5 on the basis of this first investigation on the mechanical
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characterization of human humerus behavior.

Il. METHODS

Six full humerus bones are obtained from three human cadavers, with an average age of 63 years. The
humerus specimens were supplied by the Laboratory of Anatomy of Lille University in accordance with French
regulations. Each specimen has been submitted to a virological and serological analysis and did not exhibit any
bone disease on radiographic examination. All specimens were embalmed and stored at 4°C until the beginning
of the experiments.

Scans of each specimen were performed using a 3D scanner VIVID 910 KONICA MINOLTA. These acquisitions
are performed prior to preparing the humerus for the mechanical testing and the extraction of the precise
boundary conditions. Digital geometry data are saved in the STL standard format and sent to a CAD workstation.
After segmenting the individual bone regions, we obtained the full 3D digital models of the humerus by
performing 3D surface generation of the bone cortex.

Mechanical experiments on local humerus specimens

In order to perform the local identification of the humeral bone material parameters, a first experimental
campaign is carried out using several uniaxial tension/compression tests at room temperature (20°C) on a
Dynamic Mechanical Analyzer (DMA) device (Figure 1c) available at laboratory LAMIH.

Five small specimens (H1-H5) are extracted from the same humerus (the right side of one corpse) as shown in
Figure 1. The bone samples are obtained by carefully sectioning the lateral cortices of the mid-diaphysis of the
humerus. The prismatic-shaped specimens have an average size of 50x10x3.5mm (Figure 1a).

b)
Fig. 1. Mechanical experiments on local specimens using the DMA device

In order to study the repeatability and also to avoid measurement errors, several tension/compression tests are
carried out for each specimen. For the three longitudinal specimens, namely H1, H4 and H5 (see Figure 1b), 19,
10 and 5 cyclic tension/compression tests have been undertaken respectively. For the two transverse
specimens, namely H2 and H3, 7 and 5 cyclic tension/compression tests are performed using the DMA device as
shown in Figure 1c.

Each specimen is instrumented using five gauges for strain measurement. Two strain gauges are fixed on the
top layer for the longitudinal and the transverse strain measurement and three gauges are fixed on the bottom
surface of the specimen to measure the shearing and the longitudinal strains. Each specimen is loaded up to
0.2% deformation with several velocities covering a range of 1-10 mm/mn. Each test provides a
load/displacement and stress/strain curves, characteristic of the local mechanical behavior of the specimen.
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Experimental study of low velocity impact on a human humerus

The second stage of the proposed procedure consists in performing a global experimental study of low velocity
impact on a full human humerus using a drop tower, in order to validate the numerical model. For this purpose,
the humerus of the left side of the same corpse is used. Two prismatic brackets (Figure 2a) in which the
humerus is positioned are placed on a straight support to ensure their parallelism. One of the brackets is fixed,
while the other is free to slide in order to be adapted to the length of the bone. Four positioning screws (Figure
2 a) are used to help maintain the head and the lateral epicondyle of the humerus in a fixed position.

The system humerus-brackets, is first positioned vertically and a FASTCAST® Polyurethane resin (type F14-F15
from Axson Company) is poured into the lower bracket. Three hours later (resin drying time), the humerus-
brackets system is returned and the same operation is done for the second bracket. The impact on the humerus
is chosen to hit in the middle of the diaphysis. The bone is instrumented using 5 strain gauges and 3 patterns as
shown in Figure 2a.

a) Humerus instrumentation b) Drop tower device

Fig. 2. Experimental study of low velocity impact on a human humerus

After instrumentation the humerus is scanned in order to obtain the exact physical boundary conditions of the
system humerus-brackets as well as the precise locations of the gauges to perform comparison with the finite
element model.

The impact is performed experimentally with a projectile of 6626 g mass, with an initial velocity of 1.79 m/s. The
total impact energy of the present impact test is 10 J which was shown from previous research works [2], to be
necessary to reach the human humerus ultimate strength. The humerus instrumentation together with high
speed camera (3000 fps) provides a precise recording of the evolution of the impact load as well as the
displacements/strain curves in function of time.

Theoretical description of multi-scale continuum finite element model

a) Theoretical assumptions of the micromechanical model

In the present study, the human humeral bone is considered as a multiscale heterogeneous porous material
with a matrix phase weakened by micro-pores and which exhibits transversely isotropic symmetry. The
representative volume element (RVE) of bone is composed of an isotropic elastic solid matrix with stiffness
tensor C"™ and a random distribution of ellipsoidal shaped voids made up of phases r (r=1,...,N ) with the C""
tensor.
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According to the isotropy assumption of the solid matrix, the stiffness tensor '™, reads '™ =3&'"J+24"K ,

where '™ and 4™ represent the bulk and shear moduli of the matrix, respectively and where the fourth

order tensors J and K are the isotropic fourth order tensor projectors having minor and major symmetries.
The inclusions of the phase r are taken to be identical in shape and orientation with normal n, radius a and

the average half-opening c. Let E be the uniform macroscopic strain field prescribed on the boundary of the
RVE. The corresponding displacement u(x) boundary condition reads:

u(x)=Ex (VxeoQ) (1)
Assuming now a linear elastic behavior for each phase within the RVE, the constitutive relation is given in the
form o(x)=C(x):&(x), V x & Q. Accordingly, a fourth-order concentration tensor A(x), relating the
microscopic strain £(x) to the macroscopic strain E , is introduced:
g(x)=A(x):E (2)
Taking the average of the microscopic stress o(x) and using (2), the macroscopic elastic behavior of material
can be expressed in the form =C"":E, with
C™ =< C(x): A(x) >, (3)

Based on matrix-inclusion problems [3] and the Mori-Tanaka scheme [9] which commonly deals with inclusions
interaction in composite materials, we assume a constant localization tensor by phase. Then, by using the
identity < A >q=1 in (3), an estimate for the homogenized elastic stiffness tensor of the heterogeneous
material reads as [10]:

N N
Chom =C(m) +Zf(f)(c(f) _C(m)):Ax) :(f(m)l_’_Zf(S)AiVS))—l (4)
r=1 s=1

where f™ and f" are, respectively, the volume fraction of matrix and inclusions and where the two sums are

taken over all phases of the heterogeneous material in the RVE. Ax’ denotes the strain concentration tensor

associated with the r'" phase family of inclusions of aspect ratio w =—, which writes:
a

A =[1+P (" =™ (5)

and Pv(v” is the Hill tensor [5]. This tensor depends on the shape and orientation of the rh family of inclusions

C"” (considered here as spheroid) and the elastic stiffness of the reference medium C™. This tensor reads is
defined by (see [5]):

sl (9]

(i]')(pg) ds(i) (5b)

(r) _ f
P, 1
jrq HE < {—a2(512+§22)+c2532>

for which the integration is on the unit sphere centered at the origin of space (¢;,¢,,&3) , defined by [&| = 1.

Ki(pm) (i) Cl(]rg‘)lfij is called the acoustic tensor. The notation | (;j)(pq) indicates the symmetrization with

respect to the couples (i,j) and (p,q). Let us notice that, for the porous humeral bone, the effective stiffness
tensor (4) reduces to:

Chom IC(m) +f(P) (C(P) _C(m)) :Ax,) :(f(m)/+f(P)A$f) )—1 (6)

Where f(p) is the porosity and where C® is the stiffness tensor of the porous humeral bone.

Finally, as in the previous work [10], the formalism of stiffness tensor (6) is coupled with experimental
measurements of architectural anisotropy obtained from X-ray micro tomography and the Mean Intercept
Length (MIL) method, which will, in turn, be used to calculate the porosity.

b) Theoretical review of the macroscopic eight-node Hex-Shell FE model

In this section, the formulation of the eight-node Hex-Shell element is briefly recalled. With respect to nodal
designation (see Figure 3a), the coordinate vector X and displacement vector U, of the element are [4]

X, (E.) =X (E0) 44X, (Em) =S M (6n) 5% + H

i=1

(7)
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2 1-¢ . 1+¢, .,
Uq(é:anaé/)zuo(6’77)+§Un(§’77)C=ZNi(§»77) TUI +TU/‘ (8)
i=1

where N, are the two-dimensional eight-node Lagrangian interpolation functions, X;, U, and X/, U; are

!

respectively, the coordinate and displacement vectors of the i” node on the bottom and top shell surfaces
(Figure 3a).

The infinitesimal covariant element strains with respect to the parametric coordinates are given by

_wyT T

=X. U, +X, U, (9)

J— T .
e =X:Ug ¢,

f— T .
n _X,n UJ7’ 7

sn
o =X Uy =XLU +X ULy, =X U +X U, (10)
The constitutive relation of laminated composites can be described by using an orthotropic material law. For
that purpose, we express the components of the tangent elastic moduli tensor relative to the fiber reference
axis {a,;a,;a0,} of alamina.
o o I Y o
ci2 o 0 c®® 0
0 o ¢c* o 0
c'® ¢ 0 Cc** o0
0 0 0 0o Cc®*® o
0 0 0 0 0 ¥
where the components C? take the following expressions:
CH =E (1-0,0,)/K; C'2 =E (v, +0,,)/K; €% =E,(1—-v,0,,)/ K
CHB =E, (v, +0,0,)/K; CP2 =E,(0y, +0,0,,)/ K; CPF =E,(1-v,0,,)/ K
C*? =G,; C°P=G,; C®”=G,

125 13>
K=1=0,,0,, =0,305, =Uy303, =20,,0,30s,; VijEj :VjiE i

(11)

o O o o

for (i,j=1,2,3 with i#j)and E,, E,, E, are the Young’s moduli in the principal material directions {a,;a,;a,},
respectively, and v, and G; the Poisson’s ratio and the shear modulus respectively.

Since matrix C is associated with the principal material directions, we need to transform it from the lamina
coordinate axes {a,;0,;a,} to the global Cartesian coordinate axes {e;;e,;e,}. With @ being the fiber

orientation angle relative to the global Cartesian system, the relationship between the lamina coordinate
system and the global Cartesian coordinate system is given by

a, =cosfe, +sinfe,, a,=-sinfe, +cosbe,, a,=e, (12)
The final constitutive tensor C can be expressed in the convective basis
C=T/CT, (13)

In order to deal with the several lockings, one needs to split the expression of the virtual internal work into
three contributions, by uncoupling the membrane/bending, thickness and transverse shear [4].

W, =Wt + Wi + Wy, (14)
with:

w :J.é'gsrélgs dv:5unTRmf; R, :.[B;f T,y dv (15)

v v
Wi :I552T52 g,dv=6uR,; R, :J‘BZT o, dv (16)

v v
W;t=I575T5375dV:5unTRC; RCZJ.B:chV (17)

v v

T T T
and ¢, =<¢,, Ey V> &, =E, &, £,> Ve =<UVy V>
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A Hex-Shell element formulated using equations (15-17) with standard integration based on a 2x2x2 Gauss
schema will fail because of numerous locking phenomena. As already mentioned in previous works ([4]), shear
locking is resolved using the Assumed Natural Strain (ANS) method, in which the natural shear strains are
sampled and then interpolated at some discrete element points.

Similar to shear locking, trapezoidal and volumetric lockings occur when lower order elements such as eight-
node hexahedral elements are used to model curved shells. In order to overcome these lockings, the Enhanced
Assumed Strains (EAS) method is used where a linear distribution of the normal strain in thickness direction
must be introduced to enhance the thickness strain field by adding a 7" internal variable a which will be
eliminated using a special condensation technique at the element level.

7= 1 ale, (18)
Finally the internal force vector is obtained using the modified strain fields by:
R=R,, +R." +R" (19)

Numerical identification of the matrix material parameters

Based on the obtained experimental results, a numerical procedure for the identification of the humerus matrix
material parameters has been carried out using our numerical model implemented within a UMAT in LS-DYNA®
code [7]. A small prismatic-shaped specimen FE model of 50x10x3.5mm is discretized using 500 Hex-Shell
elements (Figure 3b).

a) Hex-Shell Finite Element Model. b) Specimen FEM mesh using only 500 elements.
Fig. 3. Hex-Shell Finite Element Modeling

The inverse identification is performed, by taking as a reference data the average experimental results obtained
for all tested specimens namely £, =21368.33MPa and E, =12516MPa . In this investigation the Poisson ratio is
not studied and is supposed to be fixed equal to the average experimental one. Three identification parameters
are chosen, the elastic modulus of the bone matrix E, , the voids aspect ratio w and the porosity fraction f, .

TABLE I
DESIGN VARIABLE PROPERTIES
E. (MPa) w f,
Initial value 20000 1. 0.0
Lower bound 20000 1. 0.0
Upper bound 25000 10. 0.1

At the beginning a Design Of Experiments (DOE) is built up based on a Full Factorial algorithm. Eleven uniformly
spaced levels were taken for all three parameters (Table Il). The objective function to be minimized is based on
least squares error between the experimental and numerical stress-strain curves. The DOE generated using the
3 parameters with 11 levels for each, gives a set of 1331 runs. A Response Surface Model (RSM) is then created

using a polynomial basis vector of degree 1, where the Analysis of Variance gives a R* value of 0.99.
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Numerical simulation of the human humerus impact

The final stage of the proposed mechanical characterization of human humerus using a multi-scale continuum
FE model consists of a drop tower test. The aim of the impact test at low velocity is the validation of the
proposed numerical model in the estimation of the ultimate impact load.

The first step in this phase is the reconstruction of the 3D geometry of the humerus starting from the digitalized
STL inner and outer surfaces of the humerus. As shown in Figure 6a, the digitalized STL mesh is split into two
different parts (inner and outer surfaces). Then each STL surface is partitioned along the transverse direction
into 12 small parts (Figure 6a) using HyperMesh© software [1]. Then, the 12 small local surfaces are generated
based on the edges which have been regenerated thanks to HyperMesh© CAD facilities.

Once the total inner and outer surfaces of the humerus are built up, a first mapped shell mesh is generated
using only quadrilateral shell elements. Then a 3D mesh of the humerus volume is generated with 4320
hexahedra, thanks to the 3D meshing facilities available in HyperMesh© software (see Figure 6b).

_,.—-'-5:':—:‘
oSS
S T
SSANess

a) Humerus CAD geometry partitioning. b) Humerus FEM mesh using only 4320 hexahedra

Fig. 6. Humerus modeling

The final step in the present investigation was the creation of the global finite element set for the modeling of
the low velocity impact of the humerus. For this purpose, two brackets (see Figure 7) have been modeled using
Belytschko-Tsay shell elements with the assumption of a rigid elastic material. The whole set of the humerus
with the two supports has a total mass of 2453g, while the mass of the humerus alone (without the two heads)
is 135g. The humerus is connected to the two brackets using rigid link elements, while the center of mass of
each rigid bracket is allowed to move along the X-axis and to rotate around the Y-axis as shown in Figure 7.

The impactor of a cylindrical shape with a 20 mm of diameter is modeled using Belytschko-Tsay shell element
with the assumption of a rigid elastic material. All contact interfaces are modeled using the
CONTACT_SURFACE_TO_SURFACE without friction. The FE simulation is carried out using a total time of 10 ms
to cover the entire impact process.
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Fig. 7. Drop tower modeling using FEM
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The total mesh of the whole FEM system includes 4320 hex-shell elements, 1186 Belytschko-Tsay shell
elements and 64 rigid link elements. Two concentrated mass elements of 1080g for each bracket and a
concentrated mass of 6626g attached to the impactor taking into account the mass of the cart and the
impactor, are considered. For sake of accuracy of the FEM results, no mass scaling is used in the present
simulation.

The FE simulation is carried out using the Explicit Dynamic algorithm within LS-DYNA® code, with a total CPU
time of 2mn:48s using a "Dell Precision PWS690" workstation with 2.66GHz Intel Xeon processor and 8GB of
RAM.

lll. RESULTS

The experimental campaign of tension/compression on local specimens was conducted as a first attempt to

measure the humerus material parameters. The values of humeral bone architectural data are measured for the
prismatic-shaped specimens and an estimation of the porosity f, shows a variation within the range of 1% to
10% which is in concordance with the literature [6]. A set of 46 tests have been done on 5 samples, including
3 in the longitudinal direction of the humerus and 2 in the transverse direction.
A summary of the experimentally measured material parameters is given in Table I. As we can observe from the
second column of Table |, all three specimens in longitudinal direction give almost the same estimation of the
longitudinal elastic modulus with an average value of E, =21368.33MPa . The same remark can be done for the
two specimens positioned along the transverse direction, with an average value of the transverse elastic
modulus of E, =12516MPa .

TABLE|
SUMMARY OF THE EXPERIMENTALLY MEASURED MATERIAL PARAMETERS
E, (MPa) Ve E, (MPa) v, d. (g/mm?) £,

Sample H, 20619 0.33 - - 1.992 0.045
Sample H, 22434 0.37 - - 1.940 0.084
Sample H, 21052 0.32 - - 2.005 0.010
Sample H, - - 12358 0.20 1.962 0.010
Sample H, - - 12674 0.20 1.967 0.011
Average 21368.33 0.34 12516 0.20 1.973 0.032
Standard deviation  773.99 0.02 158 0 0.02 0.02

These experimental results are used to perform the numerical inverse identification of the humerus matrix
material parameters.
In the figure 4, the RSM for both longitudinal and transversal moduli identification is presented.

3.349E-01
[ 3.126E-01
2.904E-01
— 2681E-01
T 2.459E-01
— 2.236E-01
2.014E-01
T 1.791E-01
[ 1.569E-01
1.347E-01

035

0.278

Responses
0475 0225

» i 2 'l’\‘}és e(ﬂ'

Fig. 4. RSM for both longitudinal and transversal moduli identification
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Minimization of the RSM is carried out using a Genetic Algorithm with a mutation rate of 0.01, an elite
population percentage of 10%, a discrete states of 1024 and a Random Seed of 1. The minimization procedure
gives the results summarized in Table Ill.

As we can observe on Figure 4, the global minimum has been reached with the optimal matrix elastic modulus
E_=20000MPa , the maximum allowed porosity of 10% and a void aspect ratio of 75.83 which indicates that
the voids shape is closer to a cylindrical cavity rather than a spheroid. We can notice also from the homogenized
material parameters (Table llll) that the obtained elastic moduli in both longitudinal and transverse directions

are obtained with approximately the same error compared to the experimental values, with 16% and 13% error
respectively.

TABLE 1l
SUMMARY OF THE NUMERICAL IDENTIFIED MATERIAL (MATRIX AND HOMOGENIZED) PARAMETERS
E,, (MPa) Vi w f,
Matrix properties 20000 0.28 75.83 0.10
E, (MPa) v, E, (MPa) Vv,
Homogenized 17997.14 0.28 15200.53 0.28
Measured 21368.33 0.34 12516.00 0.20
Error 0.16 0.13

As an attempt to study the effects of the elastic moduli in both longitudinal and transverse directions, we
conduct a second inverse identification, using only the longitudinal elastic modulus obtained by the three
specimens H1, H4 and H5 positioned along the humerus.

The same procedure is applied, and a RSM is built up using a polynomial basis vector of degree 3, where the

Analysis of Variance gives an R? value of 0.88. Figure 5, shows the RSM for two different porosity values (0 and
5%).
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a) RSM with porosity f=0.

b) RSM with porosity f=5%.

Fig. 5. RSM for longitudinal modulus identification

The minimization procedure in this case gives the results summarized in Table IV. We can see from Figure 5 that
the RSM is nonlinear compared to the first RSM. The global minimum is reached with the optimal matrix elastic
modulus E, =21606.25MPa , absence of porosity (voids) fp =0% and the maximum allowed void aspect ratio
of 99.90 which indicates that the voids shape is also of a cylindrical shape along the humerus.

We can notice here, from the homogenized material parameters (Table IV) that the obtained elastic modulus in
the longitudinal direction matches exactly the experimental value. As expected, unfortunately in this case the

homogenized elastic modulus in the transverse direction is far from the experimentally average value with an
error of 40% .
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TABLE IV
SUMMARY OF THE NUMERICAL IDENTIFIED MATERIAL PARAMETERS (ONLY E, IS CONSIDERED)
E. (MPa) v, w £,
Matrix properties 21606.25 0.28 99.90 0.00
E, (MPa) Vv, E. (MPa) Vy
Homogenized 21389.97 0.28 21003.24 0.28
properties
Measured 21368.33 0.34 12516.00 0.20
properties
Error 0.00 0.40

Now, we present the result of the FE simulation of the humerus impact. Figure 8 shows the distribution of the
impact load history. We can observe globally that a good agreement is obtained for the estimation of the
ultimate load between the numerical model and the experimental response.

From Table V, we can notice that both material identification models give approximately the same estimation of
the ultimate impact load 2235N and 2391N with an error of 16.97% and 11.18% respectively.

3000
Experiment
2500 || ... Numerical 51 FE
= — - =Numerical $2 5
S 2000 | -
S
E 1500
E
1000 | e
500 |
0 0.2 0.4 0.6 0.8 1
Time (ms)
Fig. 8. Impact load (experiment vs numerical)
TABLE V
COMPARISON OF THE ULTIMATE IMPACT LOAD (NUMERICAL VS. EXPERIMENT)
Time (ms) Load (N)
Numerical Model 1 0.56 2235
Numerical Model 2 0.52 2391
Experiment 0.71 2692
Error Model 1 16.97%
Error Model 2 11.18%

IV. DISCUSSION

This study is performed to evaluate the ultimate impact load that a human humerus can support. The
present study is a first investigation for the mechanical characterization of human humerus using a multi-scale
approach. The originality of the proposed procedure consists in the identification of few material parameters to
describe a complex anisotropic behavior of the humerus bone. Precisely, only three material parameters are
necessary, namely the matrix bone Elastic modulus and two local parameters describing the voids aspect ratio
and the porosity to describe the anisotropy.
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In the first phase of material identification, using the local specimens with tension/compression tests, we
found clearly no significant differences in material parameters between the experimental tests and the
proposed multi-scale approach. In fact, both homogenized elastic moduli in longitudinal and transverse
directions obtained through the micromechanical model presents only 16% and 17% of error respectively, when
compared to the measurements. This indicates the robustness of the proposed multi-scale approach to describe
the complex anisotropic behavior of the bone.

Regarding the global validation of the model using a low velocity impact on the humerus, the numerical
model under-estimates the ultimate impact load with an error up to 16.97%. This is mainly due to two reasons:
first, each of the attached brackets has a big mass which represents eight times the humerus weight and
second, the whole set (brackets-humerus) is simply resting on the platform and thus high vibrations may be
generated at the impact pulse. Being aware that for these reasons the global humerus response may be blurred
to some extent, it becomes difficult to make a concise analysis of the results.

However, despite the aforementioned experimental uncertainties, we remark that the obtained ultimate
impact load shows a relatively limited error (16%) compared to the experimental measured load.

Finally, other improvements will be undertaken in the near future to improve these preliminary results. For
instance, due to the lack of time, we could not study the friction effects between the brackets and the flat
platform, which has probably a non-negligible effect on the global response of the model.

V. CONCLUSIONS

In conclusion, the framework of homogenization is used for the modeling of mechanical behavior for porous
bone material. The anisotropic elastic properties of the human humerus are investigated by a coupling between
the Mori-Tanaka scheme and experimental measurements of anisotropy using micro-tomography techniques.

The obtained model matches globally the experimental results via the estimation of the ultimate impact load
that a human humerus may support before fracture. Further improvements will be made to the present model
to be able to simulate the bone fracture by taking into account the nonlinear elastoplastic damage behavior and
including the strain rate effects.
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