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Abstract Road traffic injuries kill nearly 1.3 million people annually, so enhancement of traffic safety
becomes a high priority for both governmental organizations and automobile manufacturers. In addition to
safety measures used to prevent accidents, the improvement of occupant protection by adaptive restraint
systems may reduce the effects of traffic accidents more effectively than current passive restraint systems. This
study investigates numerically the development of a smart restraint system based on pre-crash classification of
occupant posture. A catalog of restraint laws optimized for nine driver postures uniformly distributed in posture
space is employed. Performance-based statistical classifiers are developed to recognize the pre-crash posture
from the signals of a stereo-vision camera which tracks the driver’s head. In addition to a Bayesian approach
used frequently in pattern recognition applications, a new classification approach, called Expected Performance
Assessment (EPA), was introduced. The performance of the adaptive restraint system with catalog controller
(RSC) was investigated using crash simulations with driver on different 200 pre-crash postures. The highest level
of injury reduction (28.2 %) compared to the nominal restraint system (RSN) optimized for the nominal posture
was obtained using a k-NN classifier and catalog with 8 restraint laws. Improved performance is expected in
future studies by expanding the number of restraint laws, experimenting with different restraint parameters,
and exploring different sensor signals (features) which may improve classifier accuracy and effectiveness.
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. INTRODUCTION

Nearly 1.3 million deaths are recorded on the world’s roads each year resulting in 20 to 50 million people
injured [1]. In addition, it has been estimated that unless immediate action is taken, by 2030 the number of
fatalities will almost double and the road fatalities will rise from the ninth to fifth leading cause of death in the
world [1]. Hence, enhancement of traffic safety becomes a high priority for both world and governmental
organizations, and automobile manufacturers [1].

Safety measures corresponding to the three phases of a traffic accident: pre-crash, crash, and post-crash are
classified as a) accident avoidance, b) occupant protection, and c) rescue, respectively. Recent advancement in
sensor technology induced a significant development of collision avoidance systems [2-3] such as warning
systems (e.g. lane departure, forward collision, etc.), assistance systems (e.g. brake assist, traction control
devices, adaptive cruise control, lane keeping assist etc.), and automatic safety systems (e.g. emergency
braking, etc.). While the numbers of injury-related traffic accidents are still high (2.12 million in US [4], 1.3
million in EU [5]), the worldwide vehicle safety experts agree that current safety systems for occupant
protection should be improved.

While current legislative and consumer standards typically assess the injury risk of an average size
Anthropometric Test Device (ATD) in a standard posture with a limited range of impact conditions, the risks of
occupant injuries depend on many potential variables related to the crash and occupant conditions. To manage
these wide variations of impact conditions encountered in vehicle accidents, “smart” (also known as “adaptive”,
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“active”, or “intelligent”) restraint systems which adapt to the specific conditions have been researched [6-10].
Several adaptive systems were developed assuming the occupant, restraint systems, vehicle interior
components and their interaction can be represented accurately by a linear time invariant (LTI) system (design
model). The variable parameters of the restraint systems (e.g. belt force) and injury criteria are correlated with
input and output variables of the LTI system [8-10]. While some promising results were proved by numerical
simulations, these systems require complex sensors which have to measure and then to calculate injury criteria
(e.g. thoracic criteria) in real time.

Current study introduces a novel adaptive restraint system which uses data mining techniques to select the
best restraint system from a pre-calculated “look-up” table in order to reduce the injury cost for a specific driver
in a certain frontal crash. While the benefit of the novel approach is proved only for the recognition of the
driver’s pre-crash posture, the method could be extended to more occupant and collision variables.

Il. METHODS

The concept of an adaptive restraint system with a look-up catalog controller

During a collision, the restraint system components (e.g. seat belts and air bags) try to reduce the contact
forces between the passenger and the vehicle interior or restraint system below the tolerance levels
corresponding to passenger biometrics [11-12]. The primary metric governing the optimization is the degree of
injury sustained by the vehicle's passengers in the event of a collision. Assessment of injury cost is most
commonly done in economic terms which include cost of medical treatment as well as long-term rehabilitation
and disability costs. These costs are estimated by calculating injury metrics from crash simulations and then
using the corresponding injury risk curves to determine the probability of the severity of injury (i.e. AlS level).
The whole body injury metric (WBIM) developed previously [11-12] based on the injury metrics corresponding
to head (HIC), neck (N;), chest (deflection), and femur/ leg (axial load) were used in current study to estimate
the injury cost in a crash simulation. While the injury cost has clear advantages with respect to other
optimization parameters by including all medical, rehabilitation, and disability costs into one parameter, its
formulation is not world-wide standardized. New vehicles are continuously being equipped with more sensors
that can detect information related to characterizing the dynamic behavior of the vehicle in a collision (e.g.
linear and angular accelerometers, crush zone sensors, rate of approach sensors) and the passenger (e.g. seat
load cells, ultrasonic/infrared sensors, cameras, seatbelt payout sensors, seat position sensors) [13]. Logically,
these sensor signals can be processed and utilized in statistical models to classify occupants and collision types
(Fig.1) [14-15].

Assuming the passenger and collision properties can be determined, a restraint design can be found to
minimize the injury metric. Generally, this optimization problem is non-convex and very time-consuming [12]. A
restraint model that generates a database “off-line” which then can be efficiently mined in real time to obtain
near-optimal control law selection during a crash event is proposed in this study [12, 16]. This selection process
could be done either in the pre-collision phase (based on information received from active safety devices) or at
the beginning of the collision phase such that there is sufficient times to analyze the sensor signals and
implement the proper restraint laws. The benefits of the adaptive restraint system could be evaluated
numerically by calculating the injury cost associated with implementing a) a restraint system with a catalog
controller (RSC) and b) a restraint system with a nominal restraint law (RSN) optimized for the standard posture
[12](Fig.1).

Occupant size/position

Occupant
Classifier

Sensor data

Injury cost
Restraint system with | _with RSC
catalog controller (RSC) 1

| Collision type Injury Reduction

Restraint system with 1

nominal restraint law (RSN) Injury cost
with RSN

\ 4

Collision
Classifier

[ COLLISION ]

No sensor data

Fig.1. Schematic flow of the methodology used to develop and validate a restraint system with a catalog
controller.
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While the methodology presented here could be applied to classify both the occupant and the collision type,
this study focuses on identifying the position of the occupant and assumes the collision type and occupant
anthropometry constant and known. The collision type chosen was a typical 57 km/h deceleration pulse
corresponding to a frontal crash of a mid-size vehicle [12].

Posture Recognition during a Collision

Previous studies [11] have shown that occupant posture during pre-collision phase has a significant effect
(35%) on injury outcome. In our recent study [12], posture parameters were varied in a statistical/parametric
study to determine which were significant with respect to injury. The lumbar flexion and sideways flexion
(Fig.1) showed to be the most significant posture parameters of the occupant facet model (50" percentile male
— MADYMO- ) in terms of injury cost (WBIM) from a set of parameters which also included the neck flexion and
seating position [12]. The x and y components of the head-to-camera distance (Fig. 2 a) showed to be the
highest correlated signals with respect to the most significant posture variables from a set of possible sensors,
thus these signals were used as features in the pattern recognition algorithms.

Acknowledging that it may be impossible to optimize a restraint law for all pre-crash scenarios (infinite
posture space), the occupant space was divided into nine posture classes (Fig. 2b) defined based on head
location [12]. Then, the restraint parameters were optimized in terms of minimizing injury cost for pre-crash
postures corresponding to the centers of the nine regions. These optimized restraint laws were included in a
“look-up” table ( the catalog controller).

1 Camera for head
detection

1- sideways flexion
2- seating position
3- lumbar flexion
4- neck flexion

IP- in position

OOP — out-of-position
COOP-critically out-of
position

Fig.2. a) Posture variables, b) Posture classes defined based on head location [12].

Bayesian Classification

A Bayes classifier is a pattern recognition algorithm that classifies objects using Bayes’ decision theory and
requires two conditions: 1) a cost can be associated with the damage involved when an object is misclassified
and 2) the expectation of cost is acceptable as an optimization criterion. Suppose there is an arbitrary classifier
that asserts a class w; (from the set of classes Q = {wj,...w«}, where K is the number of classes) to a measurement
vector x coming from a true class w;. Associated with this assertion is a cost C(w;| w;) and a posterior probability
P(w;|x) of having an object of class w; given the measurement vector x. The measurement vector x, also called
the feature vector, describes the significant features of an object that will differ from class to class, but also vary
within the same class. The expectation of the cost, also known as the conditional risk R(w; |x), is

R(wj]x) = Ti, C(wj|w;)P(w;]%) (1)

where the posterior probability can be written as
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P(aylx) = ZH200 @)
The conditional probability density function (PDF) of class w; p(x|w;) describes the distribution of feature
vectors in the feature space inside a particular class. The prior probability P(w;) is based on previous
knowledge about the classes independent of the feature vector. The divisor P(x) = YX | p(x|w;)P(w;) is a
scaling factor which assures that the sum of the posterior probabilities is equal to 1. In this study, the feature
vector x consisted of the sensor signals that had the highest correlation with the significant posture variables
(i.e. camera-to-head distance had the highest correlation with lumbar and sideways flexion [12]). Since the
classes are formulated in this study, it was assumed there is no prior knowledge about the classes, so
P(w;) = 1/K fori=1..K.
The decision principle behind Bayes’ decision theory is to choose the class w; that minimizes the overall
(conditional) risk, so the Bayes minimum risk (BMR) classifier is derived as [17]:

©pur(X) = argminj [Zfﬂ C(wj|a)l-)p(x|wi)] (3)

A simplified Bayesian classifier, called minimum error rate (MER) classifier, is obtained if a uniform cost function
is assumed. In this case, a unit cost is assumed when an object is misclassified and zero cost when the
classification is correct, which simplifies to [17]:

©pur(X) = argmin; [p(x|w;)] (4)

The main challenge in developing Bayes classifiers is typically determining the conditional PDFs p(x|w;). While
the conditional PDFs of the posture classes are usually unknown, supervised parametric (SPL) and
nonparametric learning (SNL) methods are used to approximate them. The SPL techniques assume the
expressions of the probability densities and estimate their unknown parameters using a training set. The SNL
approach also uses a training set to determine the conditional probability distributions, but without prior
knowledge of their functional form [12, 16]).

Posture Recognition using Region-based Classification

A Bayesian approach was applied in our previous study [12], where the posture space was divided into nine
regions/classes based on the head position (feature). Two Bayesian parametric classifiers (MER and BMR) with
an estimated Gaussian PDF were developed to assign a class for to unknown postures based on sensor data
provided by a stereo-vision camera (Fig.2). The evaluation of the classifiers on an independent validation set (a
Sobol DOE with 200 postures) showed a maximum average reduction of injury cost of 21% (MER classifier )
compared to a restraint system optimized in the standard posture (used currently in regulations).

To investigate the global performance of the nine restraint laws included in the catalog, a uniform grid of 196
points (14x14) was selected in the posture space defined by the angles of lumbar and sideways flexion. The
lumbar flexion angle was varied uniformly from -3.5° to 35.6° and the sideways flexion angle was varied from -
14.4° to 14.4° (Fig. 3a). In this training set neck flexion and seating position were kept constant to reduce the
noise in the sensor signals. Crash simulations were run in MADYMO™ v7.2 (TNO MADYMO BV., Netherlands)
with the occupant in the pre-crash postures corresponding to these grid points for each of nine catalog restraint
laws and the nominal restraint law. The normalized injury cost was calculated for each of the crash simulations
and sensor signals were extracted to be used later in the classifiers.
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Fig 3. a) The region-based posture classes b) best restraint laws at 196 uniformly distributed postures in the
occupant posture space defined by lumbar flexion and sideways flexion angles

The performance evaluation of nine controllers on a uniform grid of the posture space showed a non-uniform
distribution of the best controller (Fig. 3.b) which showed hyper-optimality in the controllers. The assumption
that the restraint laws will be best throughout their respective region/class was proved to be false. Restraint
laws 5, 6, and 9 are the best laws for more than half of the posture space (69.4%), and the most sensitive
restraint laws (i.e., 2, 4, 8) occur only at a few points (8.2%). The poor performance of restraint laws 1, 2, 3, 4,
and 7 with respect to their regions may be due to the fact that a local minimum was reached in the restraint
parameter design space or a point of hyper optimality was achieved such that the performance decreased
significantly when the posture was varied slightly. In addition, the results show that it may not be necessary to
include all nine laws when forming the RSC since the sensitive restraint laws are rarely the best restraint law
over the entire posture space. In conclusion, it is clear that more improvements in terms of injury reduction can
be obtained by improving the selection process of controllers.

Posture Recognition using Performance-based Classification

The sensitivity in performance of several restraint laws optimized in certain points of the posture space
showed that improved results may be achieved if a performance-based classification was implemented rather
than a region-based classification. Two approaches were tested for development of performance-based
classifiers: 1) the classical Bayesian approach [17] 2) a novel approach called Expected Performance Approach
(EPA).

A. Bayesian Approach

As mentioned before, in the Bayesian approach a restraint law is assigned to each class. While in the region-
based approach a class was predefined around the posture point used to optimize the restraint laws, the classes
of the performance-based classifiers were defined based on their best performance calculated in the 196
uniformly distributed postures in the occupant space. Both parametric and non-parametric supervised learning
classifiers were tested. While short descriptions of these statistical classifiers employed in this study are briefly
outlined below, the reader is referred to Duda et al. [14] or van der Heijden et al. [17] for a more detailed
treatment of pattern recognitions algorithms.

1) Supervised parametric learning (SPL) classifiers

The SPL classification methods used in this study were linear and quadratic discriminant classifiers (LDC and
QDC, respectively). QDC assumes that the measurement vectors coming from an object of class wy are normally
distributed with mean vector u, and covariance matrix C,. In the simple case where the length of the
measurement vector is 2 (two feature case), the decision boundaries dividing classes are quadratic. LDC is a
simplification of the quadratic classifier which assumes that the covariance matrices do not depend on the
classes (i.e. C, = constant). In LDC case, the decision boundaries in the two feature case are linear [17].

- 209 -



IRC-12-28 IRCOBI Conference 2012
2) Supervised non-parametric learning (SNL) classifiers

SNL classifiers are much more general than SPL classifiers, but they require larger training sets to obtain
accurate results. The SNL classifiers used in this study were Support Vector Machine (SVM), Parzen (PARZ), and
nearest neighbor (NN) classifiers.

SVM classifier is a nonlinear classifier that forms decision boundaries by maximizing the margin between
two different classes (i.e. the distance between samples that can be drawn around the decision boundary). To
develop the algorithm for this classifier, a linear classifier described as g(x) = w'x +b is used with training
samples x,, n = 1,.., N (where N is the number of samples) [17]. Maximizing the separation boundary is
equivalent wito minimizing ||w||? and it is solved using standard software packages. To increase generality of
the SVM classifier, the boundaries can be changed from linear to nonlinear using a method known as the
"kernel trick". In this case, the inner product between the measurement vectors (x,,, x,) are replaced by a more
general kernel function K(x., x,). In this study, two kernel functions were selected, a radial basis function
(referred to as SVM,)

K Gy, 1) = e~ lxm=xall*/0® (5)
and a polynomial function (referred to as SVM,,.).
K(xm: xn) = (xraxn + 1)p (6)

The width of the radial basis function o and the degree of the polynomial function p were optimized using
the cross-validation method. The cross-validation method partitions the training set into Y equally sized subsets.
A classifier is constructed by leaving out one of the Y subsets and then the rest of the subsets are used for
training. The subset not in the training set is used as validation data and an estimate is calculated. This is done
for all subsets and then the estimates are averaged in order to find an estimated error rate. A special case of the
cross-validation method divides the training set into the smallest subsets possible (i.e. Y = the number of
samples). This gives the best estimate of the error rate and is known as the leave-one-out method [17]

To apply SVM in the case where the number of classes is greater than two, a classifier for each class must be
developed using the one-against-rest strategy where all other classes are assumed to be one class. The two-
class classifiers are then combined to properly identify objects over all classes.

The algorithm for the Parzen classifier is obtained by replacing the conditional probability density
functionwith the Parzen estimation p(x|wy) in the equation of the general Bayes classifier (eq. 4)

®parz(X) = argmin; [ﬁ(xlwi)ﬁ(wi)] (7)

The Parzen estimation approximates the conditional probability density functions p(X|w;) by considering

separately each the training subsets T, for each class wy [17]. The probability is assumed to have a maximum at

the point in the measurement space where the training measurement vector x; is located. Then, the probability

is assumed to decrease as the distance p(x, x;) increase from x; as less is known about the class of the

measurement vector. This is done for all measurement vectors N in a given class wy. The kernel functions for all

of the measurement vectors are then summed and normalized to attain an estimate for the conditional density.

P(xlwg) = 3-Tuser, i (p(x. %)) (8)

where a kernel function H(p(x, x;)) has a maximum at x= x;, monotonically decrease as p(x, x;) increases, and is
normalized over the entire space.

Nearest neighbor classification uses a special technique that classifies objects without explicitly estimating
probability densities [17]. The identification of an object using this method considers a hyper-sphere with
dimension equal to the length of the measurement vector where the center is the test sample in question. The
volume of this hyper-sphere is denoted as V(x). The radius of the sphere is selected to surround K number of
samples out of the total number of samples in the training set Nk. Using this information, an estimate of each
class density is given by

R K;

p(xlo) =55 (9)
where K; is the number of samples out of the K nearest neighbors for w;. The prior probability for each class can
be estimated using

P(w;) = IIVV_,]( (10)

Using the Bayes framework, the asserted class can be found by substituting Equations (9) and (10) into Equation
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(4). Eliminating V(x) and Ny since they do not depend on j and simplifying the equation results in
Py (x) = argmin;[p(x|w;)P(w;)] = argmin,[K;] (11)
Thus, the decision algorithm simplifies to asserting the class that has the most samples out of the K nearest
neighbors considered [17]. For this study, K was optimized for each optimum catalog combination using the
leave-one-out method.
B. Expected Performance Assessment (EPA) Approach

The Expected Performance Assessment (EPA) approach, developed in this study, has many similarities with
the Bayes classifiers, but is more general as it does not assign a particular restraint law to a certain class. This
allows for an infinite number of restraint laws to be considered rather than being limited by the number of
classes as long as the restraint law performance for each is determined for each training point. The classifier
evaluates the performance of each restraint law over the entire training set posture region by a cost function
(i.e. Cepa(OP;,RL;), where OP; is the occupant posture and RL; is the restraint law) taking into consideration the
proximity of the points (i.e. D{x)) with respect to the test point being identified. The restraint law with the
minimum cost risk is then chosen. The cost function for the EPA classifier is formulated using the WBIM values
with size Ngx N, where Ny, is the number of restraint laws in the RSC catalog (in our case N¢=196 and Ng,=9)).
The proximity of the points with respect to the test point is quantified by calculating the Euclidean distance to
each training set point. The decision rule for the EPA classifier is defined as follows

@epa(x) = argmin;[%1% D;(x)Cgpa(Post;, RL))] (12)
where

1
Yo (x=x)2

Performance of RSC with a reduced catalog

The development of a RSC with less restraint laws may simplify the development of accurate classifiers and may
result in a reduced production cost. In addition, it would be interesting to examine how the performance of the
restraint system varies relative to the number of restraint laws. A balance must be found between minimizing
the number of restraint laws Nz, and maximizing the injury reduction across the entire posture. The best
restraint law combination for each Ng; number of restraint laws (from 1 to 9) was determined. All possible

combinations of the restraint laws ( ) for a certain number of restraint laws (Ng;) were generated,

NRp!'(9—NgLD
and the corresponding simulations were performed. The overall average injury reduction (compared to RSN in
the 196 posture set described previously) for all cases was then calculated (eq. 14).

Training and testing the performance-based classifiers

The classifiers were trained based on the sensor data recorded in the 196 postures evaluated previously (Fig.
3c).The performance of the restraint systems with catalog controllers (RSC) and statistical classifiers were
evaluated using a validation set which contains postures which were not included in the training set. The
validation test was created by generating a 200 Sobol DOE of postures varying lumbar and sideways flexion with
the same range as the training set.

Crash simulations were performed with the occupant in all postures corresponding to both validation sets (1
and 2) and using all k =9 restraint laws included in the catalog and the nominal restraint laws. The optimal injury
reduction with respect to nominal restraint law was defined as the maximum injury reduction which can be
obtained for the pre-crash posture w; :

IR o, = MaXy—110 [(w) xlOO] (14)

INjRSN,w;

where injy . and injgsy,, are the injury costs recorded with restraint law k and nominal restraint,
respectively.
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Ill. RESULTS

The maximum performance of the RSC system with reduced number of restraint laws

The best restraint law combinations were recorded and their percentage breakdown were reported (Table I).
It can be seen that the average injury cost can be reduced by 20.9% with respect to the nominal restraint law
and training set test points if only restraint law 6 is implemented. The reduction of injury increases as the
number of restraint laws increases, but the performance of the catalog controller decreases due to the
nonlinear relationship of the number of restraint laws and the average injury reduction (98% of the injury
reduction obtained by 9 RLs can be realized by using only 5 RLs). As seen by Table |, the last 4 RLs added to the
catalog only account for approximately 13% of the posture space. To assign a certain restraint law based on the
coordinate of driver’s head recorded by the stereo-vision camera in a certain crash scenario, classifiers should
be developed for each RSC system.

TABLE |
OPTIMUM CATALOG COMBINATIONS AND THEIR CORRESPONDING OVERALL INJURY REDUCTION

Nr. RL Percentage (%) each RL produces minimum injury cost Ovr. Inj.

RL1 RL 2 RL 3 RL4 RL5 RL6 RL7 RL8 RL9 Red. (%)
1 100 20.9
2 39 61 25.5
3 38 38 23 27.4
4 34 29 15 22 28.4
5 6 29 29 14 21 29.1
6 6 7 26 28 13 21 29.4
7 5 7 24 27 12 6 19 29.6
8 5 2 7 24 27 12 5 19 29.7
9 4 2 7 2 23 27 12 5 19 29.7

Contour plots showing the normalized injury costs over the whole posture space for both RSN and RSC
systems are illustrated in Figure 4. It can be seen that the occupant is at a lower risk of injury leaning left and is
more prone to injury if leaning forward and to the right. The RSC system reduces significantly the injury cost
with respect to RSN system in the majority of the posture space regions. Lower performance was observed in a
few postures corresponding to the leaning right region (in position and out-of-position) which may be improved
by adding several restraint laws optimized for these regions in the catalog.

0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
W7 e xAwl &

10 15 20 25 30 ) 35 40
Lumbar flexion (deg)

a) b)

sideways flexion (deg)
Sideways flexion (deg)

s\
5

o 5 10 15 20 25 30 35 40
lumbar flexion (deg)

Fig.4. The contour plot of injury cost for a) nominal RSN system b) an ideal RSC with nine restraint
laws included in catalog

The RSC system with performance-based classifiers

An example of the class boundaries of the four-class classifiers determined using the training set is presented
(Fig. 5). LDC is the simplest classifier and produces linear boundaries separating the different classes. QDC and
SVM, show relatively similar nonlinear boundaries and divide the posture class into distinct convex classes.
Complex boundaries which result in concave and non-distinct posture classes are determined by SVM, and
Parzen classifiers. k-NN and EPA are the most complex classifiers as the boundaries fit the training data very
closely which produced multiple regions for RLs 5 and 6.
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The performance of the posture classifiers varies with respect to number of restraint laws, classifier type and
validation set. For validation set 1 (Table Il), the PARZ classifiers showed the highest performance for a reduced
number of restraint laws (up to 3), but their performance slightly decrease as the number of restraint laws
increases. The k-NN classifiers showed a monotonically increased performance with respect of the number of
restraint laws and the highest performance among all classifiers for more than 3 restraint laws. The EPA showed

a good performance being usually one of the best three classifiers.
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for the four-class case
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d) SVM, (r = 0.16)
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OVERALL INJURY REDUCTION FOR OPTIMUM PERFORMANCE AND CLASSIFIERS WITH REDUCED NUMBERS OF RLS
(NOTE: THE BEST CLASSIFIERS FOR A CERTAIN NUMBER OF RESTRAINTS IS UNDERLINED)

Classifier Percentage (%) each RL produces minimum injury cost

RL2 RL3 RL4 RL5 RL6 RL7 RL8 RL9
LDC 24.4 25.5 25.6 25.6  25.7 26.1 26 26
Qbc 24.7 25.7 26.0 259 259 264 263 26.4
SVM, 25.1 26.0 26.3 26.4  26.7 258 254 255
SVM, 25.2 26.5 26.8 27.9 27.5 26.2 26.5 26.8
PARZ 25.3  26.55 27.0 27.4  27.6 27.4 275 264
k-NN 24.9 26.4 27.3 27.8 27.9 28.1 28.2 28.0
EPA 24.8 26.2 26.6 27.2 27.3 27.2 269 269
OPT 26.0 27.7 28.8 29.6 30.1 30.2 30.3 304

Note: the lowest computational time for each Ny, was underlined.
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TABLE Il
COMPUTATIONAL TIME* (uS) FOR THE CLASSIFIERS

Classifier Number of restraint laws used

RL2 RL3 RL4 RL5 RL6 RL7 RL8 RL9
LNC 13 15 16 16 17 18 18 19
QnNC 14 15 16 16 17 18 19 20
SVM, 64 232 375 370 426 491 676 711
SVM, 59 230 288 353 425 481 553 607
PARZ 60 79 94 118 135 150 164 183
k-NN 41 42 41 42 42 42 42 43
EPA 12 12 11 12 12 12 12 13

* — the computational time recorded on an Intel Core2Quad 2.4 GHz processor Q6600, 8 GB DDR2 RAM
Note: the lowest computational time for each Ny was underlined.

The computational time for all classifiers is displayed in Table 3. EPA had the lowest computational time and
did not vary with respect to Ni. LNC, QNC, 1NN, and KNN had slightly longer computational times and
increased slightly as Ny, increased. The computational time of PARZ also increased as increased but took longer
due to the estimated conditional probability density functions. SVM, and SVM, showed an increase in
computational time due to the fact that the number of classifiers was equal to Ng,.

IV. DiscussION

Restraint systems are key factors in preventing and reducing occupant injuries when a crash cannot be
avoided. Optimizing the parameters of these systems for a certain crash scenario is typically a non-trivial and
time-consuming problem due to the large number of collision variables involved. The target of fixed
optimization design of current restraint systems is generally aimed at “typical” passengers (50th percentile
male) in a “typical” pre-crash posture (relaxed posture) involved in a “typical” collision (e.g. frontal collision with
a 56 km/h initial velocity [18]). The performance of a restraint system obtained by this fixed optimization
approach showed a significant sensitivity when the occupant pre-crash posture was varied (Fig. 4a). A crash
simulation study with volunteers [19] reported that only 17% of passengers were close to nominal posture
during pre-crash phase; therefore, these results may highlight the need for adaptive restraint systems which
takes into account occupant and vehicle characteristics (Fig. 4b).

The novel restraint approach proposed in this study includes a statistical classifier which can recognize the
posture of an occupant using sensor data and select an appropriate restraint law for the specific conditions of a
crash from a set of restraint laws included in a predefined “look-up” table. A Bayesian approach was employed
to develop six classifiers using both parametric learning (LDC, QNC) and non-parametric learning (SVM, SVM,,
PARZ, kNN) methods. A usual approach in the safety field is to divide the occupant space in sub-space (regions)
and use them in the occupant classification process. This approach was used in our previous study [12] which
developed two SPL classifiers (error rate and minimum risk classifiers) and showed a maximum 21% overall
injury reduction compared to the nominal restraint system.

In current study, a performance-based approach was used to develop the nine Bayesian classes using the
results of crash simulations performed with all restraint laws and 196 distinct postures uniformly distributed in
the posture space. The performance of the RSC showed to be sensitive to the type of the classifier and to the
number of restraint laws used. Overall, the injury reduction of performance-based classifiers was between 24.4
% and 28.2 %, significantly higher than the highest injury reduction obtained using region-based classifiers.

The EPA approach was proposed and used in this study. This novel approach has many similarities with
Bayesian supervised learning, but it is more general and more computational efficient (about 12 ps
computational time). While the number of restraint laws included in the catalog of a Bayesian classifier should
be equal with the number of classes, the EPA classifiers does not have this constraint. Therefore, the
performance of the EPA classifiers could be improved by adding more restraint laws into its catalog. Other
distance measures in the decision rule, different than the Euclidian norm used in our current study, may also
yield better performance for EPA classifiers than the classical Bayesian classifiers in the real-time optimization
process.

IM
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A limitation of this study was the fact that the number of restraint laws was restricted to the nine developed
in the previous study [12]. The performance of RSC can be improved by adding more possible restraint laws and
optimizing more restraint parameters (e.g. pretensioner stroke, etc.). However, a challenging question would
be choosing the best approach to attain these restraint laws(e.g. point-optimization, a region-optimization,
simply choosing some parametric restraint laws in the restraint space (without optimization), etc). It is believed
that more research in this field is needed to determine the optimum approach. In addition, higher injury
reduction percentages may be possible by including other occupant characteristics in the classification process
(e.g. age, sex, and anthropometric data) and combining them with the crash characteristics (the current study
only employed 50th male occupants and full frontal crashes at 56 kmh initial velocity).

V. CONCLUSIONS

This study investigated numerically the development of an adaptive restraint system that selects from a
catalog the most appropriate restraint law corresponding to the occupant’s pre-crash posture. A catalog of nine
restraint laws optimized in a previous study [12] for postures that were uniformly distributed in posture space
was employed. The performance of these restraint laws optimized locally showed significant sensitivity when
they were evaluated over the entire posture space. While the restraint laws corresponding to the center and
leaning left OOP region showed the best global performance, the restraint law corresponding to the leaning
right OOP region recorded the worst performance. For an ideal RSC with all nine restraint laws applied to the
validation set, the potential injury reduction was up to 30.4% with respect to the RSN.

This study proved that the definition of the posture classes plays a major role in obtaining a good
performance in reduction of occupant injury cost during the crash. The best RSC with two posture classes
defined based on performance showed a significantly better injury reduction than a RSC with nine uniform
classes developed in our previous study. Improved performance is expected in future studies by expanding the
number of restraint laws the catalogs of EPA classifiers, experimenting with different restraint parameters, and
exploring different sensor signals (features) that more clearly define restraint law boundaries thus improving
classifier accuracy and effectiveness
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